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Scope of this tutorial regarding Sampling

Generally, sampling refers to the problem of generating new samples from
a distribution π, given some information on π, e.g.:

1. π’s density is known up to a normalization constant (e.g. as
in Bayesian inference)

2. some samples of π are known (e.g. images as in generative
modelling).

We will focus on the first setting and non parametric methods,
which includes algorithms such as Langevin Monte Carlo or Stein
Variational Gradient Descent.

We will not cover parametric methods i.e. Variational Inference.

We will not cover the second setting and methods such as Generative
Adversarial Networks, Score-based Generative modelling...
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About this tutorial

We view the Sampling problem as an Optimization problem
over the space of probability distributions.

Objective

• Leverage the powerful geometry of optimal transport on the
space of probability distributions and in particular Wasserstein
gradient flows

• Exploit the analogy between Euclidean gradient flows and
Wasserstein gradient flows to design and analyze sampling
algorithms
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Structure of this tutorial

1. Motivation for Sampling, Sampling as Optimization and
high-level presentation of the ideas

2. Review of Euclidean Gradient Flows (GF) on Rd and their
properties, rates of convergence for discretized GF
(=optimization algorithms)

3. Introduction of Wasserstein Gradient Flows and analogies with
Rd

4. Illustrations with sampling algorithms as discretizations of
Wasserstein GF: rates on Langevin Monte Carlo and Stein
Variational Gradient Descent, quick tour of other algorithms.
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Disclaimer

We do not claim generality and/or optimality of the results
in this talk.

In particular,

• We will not work under minimal assumptions
(see [Ambrosio et al., 2008] for that)

• We will not provide the best known convergence rates

• We will not study the dimension dependence of the algorithms
(important, but does not fit in our story line)

• We will not cover all the literature on this topic (Sorry!)1

We focus on the underlying geometry of the problems and
some examples.

1If you feel we should have included something, please send us an email!
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Motivation for Sampling: Bayesian inference

Goal of Bayesian inference: learn the best distribution over a
parameter x to fit observed data.

(1) Let D = (wi , yi )
p
i=1 a dataset of i.i.d. examples with features

w , label y .

(2) Assume an underlying model parametrized by x ∈ Rd , e.g.:

y = g(w , x) + ϵ, ϵ ∼ N (0, Id).

Step 1. Compute the Likelihood:

p(D|x)
(1)
∝

p∏
i=1

p(yi |x ,wi )
(2)
∝ exp

(
−1

2

p∑
i=1

∥yi − g(wi , x)∥2

)
.
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Step 2. Choose a prior distribution (initial guess) on the parameter:

x ∼ p0, e.g. p0(x) ∝ exp

(
−∥x∥2

2

)
.

Step 3. Bayes’ rule yields the formula for the posterior distribution
over the parameter x :

p(x |D) =
p(D|x)p0(x)

Z
where Z =

∫
Rd

p(D|x)p0(x)dx

is called the normalization constant and is intractable.

Denoting π := p(·|D) the posterior on parameters x ∈ Rd , we
have:

π(x) ∝ exp (−V (x)) , V (x) =
1

2

p∑
i=1

∥yi − g(wi , x)∥2 +
∥x∥2

2
.

i.e. π’s density is known ”up to a normalization constant”.
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The posterior π is interesting for

• measuring uncertainty on prediction through the distribution
of g(w , ·), x ∼ π.

• prediction for a new input w :

ŷ =

∫
Rd

g(w , x)dπ(x)︸ ︷︷ ︸
”Bayesian model averaging”

i.e. predictions of models parametrized by x ∈ Rd are
reweighted by π(x).
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In this talk, Sampling
=

construct an approximation µM = 1
M

M∑
m=1

δxm of π.

12 / 105



Introduction Optimization over Rd Optimization over P2(Rd ) Sampling algorithms Conclusion

(Some, Non parametric) Sampling methods

(1) Markov Chain Monte Carlo (MCMC) methods: generate a
Markov chain in Rd whose law converges to π ∝ exp(−V )

Example: Langevin Monte Carlo (LMC)
[Roberts and Tweedie, 1996]

xm+1 = xm − γ∇V (xm) +
√

2γηm, ηm ∼ N (0, Id).

Picture from https://chi-feng.github.io/mcmc-demo/app.html.
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(2) Interacting particle systems, whose empirical measure at
stationarity approximates π ∝ exp(−V )

Example: Stein Variational Gradient Descent (SVGD)
[Liu and Wang, 2016]

x im+1 = x im−
γ

N

N∑
j=1

∇V (x jm)k(x im, x
j
m)−∇2k(x im, x

j
m), i = 1, . . . ,N.

Picture from https://chi-feng.github.io/mcmc-demo/app.html.
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Sampling as minimization of the KL
The Kullback-Leibler (KL) divergence between µ, π ∈ P(Rd) is:

KL(µ|π) =

{ ∫
Rd log

(µ
π (x)

)
dµ(x) if µ ≪ π

+∞ else.

Note that
π = arg min

µ∈P(Rd )

KL(µ|π).

The KL as an objective is convenient since it does not depend on
the normalization constant Z !

Recall that writing π(x) = e−V (x)/Z we have:

KL(µ|π) =

∫
Rd

log
( µ

e−V
(x)
)
dµ(x) + log(Z ).
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Sampling as optimization over P2(Rd)

Assume π ∈ P2(Rd) = {µ ∈ P(Rd),
∫
Rd ∥x∥2dµ(x) < ∞}.

Sampling can be recast as optimization over P2(Rd):

min
µ∈P2(Rd )

F(µ), F(µ) := KL(µ|π).

Equipped with the Wasserstein-2 (W2) distance from optimal
transport1, the metric space (P2(Rd),W2) has a convenient
Riemannian structure [Otto and Villani, 2000].

1W 2
2 (µ, ν) = infs coupling of µ,ν

∫
Rd×Rd ∥x − y∥2 ds(x , y) .
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Starting from some µ0, one can then consider the Wasserstein
gradient flow of F = KL(·|π) over P2(Rd), i.e. path of
distributions (µt)t≥0 decreasing F , to transport µ0 to π.

We will see that these paths (µt)t≥0 obey PDE (Partial
Differential Equations)

µ0

µt

”µ̇t = −∇W2F(µt)”

which themselves rule the dynamics of particles (xt)t≥0 in Rd

dxt = v(xt , µt)dt+σ(xt , µt)dbt , xt ∼ µt , (bt)t≥0 Brownian motion.

Discretizing these dynamics (xt)t≥0 yields sampling
algorithms.
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Recall that π(x) ∝ exp (−V (x)) , V (x) =

p∑
i=1

∥yi − g(wi , x)∥2

︸ ︷︷ ︸
loss of the model g(·,x)

+
∥x∥2

2
.

We will see that in the Wasserstein geometry, the KL(·|π)
objective inherits convexity properties of V , i.e.:

• if V is convex (e.g. g(w , x) = ⟨w , x⟩ linear), π is
”log-concave” and ”sampling is easy”

0
t

KL( | )
2( d)

When π is log-concave, KL(·|π) : P2(Rd ) → R̄+ is (geodesically) convex as represented here.
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Recall that π(x) ∝ exp (−V (x)) , V (x) =

p∑
i=1

∥yi − g(wi , x)∥2

︸ ︷︷ ︸
loss of the model g(·,x)

+
∥x∥2

2
.

We will see that in the Wasserstein geometry, the KL(·|π)
objective inherits convexity properties of V , i.e.:

• if V is nonconvex (e.g. g(w , x) is a neural network), π is
”non log-concave” and ”sampling is hard”

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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Sampling as optimization: how it started
Since the seminal paper of [Jordan et al., 1998], it is known that
the distributions (µt)t≥0 of Langevin dynamics in Rd

dxt = −∇V (xt)dt +
√

2dbt ,

where (bt)t≥0 is the Brownian motion in Rd , follow a Wasserstein
gradient flow of the Kullback-Leibler divergence.

Recently, this optimization point of view has been used to derive
rates of convergence for variants of the Langevin Monte Carlo
algorithm:

• [Wibisono, 2018]

• [Durmus et al., 2019]

• [Bernton, 2018]
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Recent synergies between Sampling and PDE

• Simons institute program ”Geometric Methods in Optimization and
Sampling”1, Fall 2021. Co-organized by Philippe Rigollet, Katy Craig,
Simone di Marino and Ashia Wilson.

• Book to appear by Sinho Chewi.

1https://simons.berkeley.edu/workshops/gmos2021-bc
21 / 105
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Gradient

Let V : Rd → R differentiable. What is the gradient of V ?

Definition: If a Taylor expansion of V yields:

V (x + εh) = V (x) + ε⟨gx , h⟩ + o(ε),

where ⟨·, ·⟩ is some inner product, then gx is the gradient of V at
x under the inner product ⟨·, ·⟩.

• If ⟨·, ·⟩Rd is the Euclidean inner product then gx = ∇V (x).

• If ⟨·, ·⟩P is the inner product induced by a positive definite
matrix P (i.e. ⟨x , y⟩P = ⟨Px , y⟩Rd ) then gx = P−1∇V (x).

24 / 105
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Euclidean Gradient Flow

Problem:
min
x∈Rd

V (x),

where V : Rd → R s.t. ∇V is L-Lipschitz (V is L-smooth).

Using Cauchy-Lipschitz, consider

ẋt = −∇V (xt), t ≥ 0,

where we denote xt = x(t), ẋt = dxt
dt .

Gradient flow of V = the solution of this Ordinary
Differential Equation (ODE) for any initial data x(0).
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Descent property of gradient flows

Using (1) the chain rule and (2) ẋt = −∇V (xt),

dV (xt)

dt

(1)
= ⟨ẋt ,∇V (xt)⟩

(2)
= −∥∇V (xt)∥2 ≤ 0.

The gradient flow decreases the objective function.

This is a fundamental property of the gradient
flow [De Giorgi et al., 1980, De Giorgi, 1993].
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Particular case: V convex

Let λ ≥ 0. V is λ-strongly convex if
∀x , y ∈ Rd , t ∈ [0, 1],

V ((1 − t)x + ty) ≤ (1 − t)V (x) + tV (y) − λt(1 − t)

2
∥x − y∥2.

0-strong convexity is simply convexity.

Since V smooth, this is equivalent to

∀y ∈ Rd ,V (x) + ⟨∇V (x), y − x⟩ +
λ

2
∥y − x∥2 ≤ V (y).

27 / 105
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Evolution Variational Inequality (EVI)

Assume V is λ-strongly convex. Then, the gradient flow
satisfies the following variational inequality: for every y ∈ Rd ,

d

dt
∥xt − y∥2 ≤ −2(V (xt) − V (y)) − λ∥xt − y∥2.

Proof: Using the chain rule and convexity,

d

dt
∥xt − y∥2 = 2⟨ẋt , xt − y⟩

= −2⟨∇V (xt), xt − y⟩
≤ −2(V (xt) − V (y)) − λ∥xt − y∥2.
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The EVI is fundamental

Rewrite the EVI as

d

dt
∥xt − y∥2 ≤ −2(V (xt) − V (y)).

This inequality characterizes the gradient flow when V is
convex. Note that it does not use ∇V .

Indeed, any curve (xt)t≥0 satisfying this inequality also satisfies

2⟨ẋt , xt − y⟩ ≤ −2(V (xt) − V (y)), ∀y ∈ Rd ,

which implies ẋt = −∇V (xt) using convexity.

29 / 105



Introduction Optimization over Rd Optimization over P2(Rd ) Sampling algorithms Conclusion

The EVI is fundamental

Rewrite the EVI as

d

dt
∥xt − y∥2 ≤ −2(V (xt) − V (y)).

This inequality characterizes the gradient flow when V is
convex. Note that it does not use ∇V .

Indeed, any curve (xt)t≥0 satisfying this inequality also satisfies
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Time discretizations of the gradient flow
Let γ > 0 a step-size.

• Gradient descent algorithm:

xm+1 = xm − γ∇V (xm),

i.e. Forward Euler (explicit):

xm+1 − xm
γ

= −∇V (xm).

• Proximal point algorithm (V convex):

xm+1 = proxγV (xm) := arg min
y∈Rd

γV (y) +
1

2
∥xm − y∥2

i.e. Backward Euler (implicit):

xm+1 − xm
γ

= −∇V (xm+1).
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Other time discretizations: splitting schemes

• Proximal gradient algorithm (V = F + G , G convex):

xm+ 1
2

= xm − γ∇F (xm)

xm+1 = proxγG (xm+ 1
2
)

i.e. Forward Backward Euler (explicit implicit):

xm+1 − xm
γ

= −∇F (xm) −∇G (xm+1).

These time discretizations are unbiased (i.e. they preserve
x⋆ ∈ arg minV as a fixed point).

Time discretization ⇒ Optimization algorithm
Discrete Descent/EVI ⇒ Convergence rates
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Descent lemma

The time discretizations of the gradient flow decrease the objective
function:

V (xm+1) − V (xm)

γ
≤ −1

2
∥∇V (x̂m)∥2.

• For Forward Euler (i.e. gradient descent), x̂m = xm and
γ ≤ 1/L,

• For Backward Euler x̂m = xm+1.
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Nonconvex rates for gradient descent
Generally, nonconvex rates can be obtained using Descent
lemma:

1. we first obtain

1

M

M−1∑
m=0

∥∇V (xm)∥2 ≤ 2(V (x0) − V (x⋆))

γM
.

2. If V satisfies a Gradient dominance condition (a.k.a.
Polyak- Lojasiewicz) with λ, i.e.:

∀x ∈ Rd , V (x) − V (x⋆) ≤ 1

2λ
∥∇V (x)∥2,

then we can also obtain:

V (xM) − V (x⋆) ≤ (1 − γλ)M(V (x0) − V (x⋆)).
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Gradient dominance is more general than convexity

∀x ∈ Rd , V (x) − V⋆ ≤
1

2λ
∥∇V (x)∥2.

• λ-Strong convexity ⇒ gradient dominance with the same
constant λ > 0

• Gradient dominance ⇒ invexity1

• Gradient dominance ⇏ convexity

4 3 2 1 0 1 2 3 4
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 f(x) = x2 + 3sin2(x)

1any local minimum of V is a global minimum.
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Convex case - Discrete EVI

Assume V λ-strongly convex. Then, the time discretizations of
the gradient flow satisfy a discrete variational inequality: for every
y ∈ Rd ,

∥xm+1 − y∥2 − ∥xm − y∥2

γ
≤ −2(V (xm+1) − V (y)) − λ∥x̂m − y∥2.

• For Forward Euler (i.e. gradient descent), x̂m = xm and
γ ≤ 1/M,

• For Backward Euler x̂m = xm+1.
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Convex rates for gradient descent

Generally, convex rates can be obtained using discrete EVI +
Descent lemma:

1. for λ ≥ 0 we can obtain

V (x̄M) − V (x⋆) ≤ ∥x0 − x⋆∥2

2γM
, where x̄M =

1

M

M∑
m=1

xm

V (xM) − V (x⋆) ≤ ∥x0 − x⋆∥2

2γM
,

2. and, if λ > 0,

∥xM − x⋆∥2 ≤ (1 − γλ)M∥x0 − x⋆∥2.
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Definition of the Wasserstein space

Let P2(Rd) the space of probability measures on Rd with finite
second moments, i.e.

P2(Rd) = {µ ∈ P(Rd),

∫
∥x∥2dµ(x) < ∞}

P2(Rd) is endowed with the Wasserstein-2 distance from Optimal
transport: ∀µ, ν ∈ P2(Rd),

W 2
2 (µ, ν) = inf

s∈Γ(µ,ν)

∫
Rd×Rd

∥x − y∥2 ds(x , y),

where Γ(µ, ν) is the set of possible couplings between µ and ν.

The metric space (P2(Rd),W2) is called the Wasserstein space.
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Riemannian structure of (P2(Rd),W2) and L2 spaces

Denote by

L2(µ) = {f : Rd → Rd ,

∫
Rd

∥f (x)∥2dµ(x) < ∞}

the space of vector-valued, square-integrable functions w.r.t µ.

It is a Hilbert space of functions equipped with the inner product

⟨f , g⟩µ =

∫
Rd

⟨f (x), g(x)⟩Rddµ(x).
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Pushforward measure

Let µ ∈ P2(Rd), T : Rd → Rd a measurable map.

The pushforward measure T#µ is characterized by:

X ∼ µ =⇒ T (X ) ∼ T#µ.

Remark: Id# µ = µ where Id denotes the identity map.
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Moving on P2(Rd) through L2 maps

Note that if T ∈ L2(µ) and µ ∈ P2(Rd), then T#µ ∈ P2(Rd):∫
∥y∥2d(T#µ)(y) =

∫
∥T (x)∥2dµ(x) < ∞,

since T ∈ L2(µ).

Brenier’s theorem [Brenier, 1991] : Let µ, ν ∈ P2(Rd) s.t.
µ ≪ Leb. Then, there exists a unique T ν

µ : Rd → Rd such that

1. T ν
µ#µ = ν

2. W 2
2 (µ, ν) = ∥ Id−T ν

µ∥2
µ

def.
=
∫
∥x − T ν

µ (x)∥2dµ(x).

and T ν
µ is called the Optimal Transport map between µ and ν.
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Wasserstein geodesics between µ, ν?
The path

ρt = ((1 − t) Id+tT ν
µ )#µ, t ∈ [0, 1]

is the Wasserstein geodesic between ρ0 = µ and ρ1 = ν.

µ ν

ρt = ((1 − t) Id+tT ν
µ )#µ

It differs completely from the (mixture) path

ρ̃t = (1 − t)µ + tν

which also interpolates between ρ̃0 = ρ0 = µ, ρ̃1 = ρ1 = ν.
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Source and Target distribution

Wasserstein interpolation ( t)t [0, 1]

Source and Target distribution

Mixture interpolation ( t)t [0, 1]

If µ is supported on a set of particles x1, . . . , xN ,

these particles would be pushed continuously through ρt ,

while they would be teleported to other locations through ρ̃t .

Figure made with https://pythonot.github.io/.
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Convexity along Wasserstein geodesics

Let F : P2(Rd) → (−∞,+∞].

F λ-strongly geo. convex with λ ≥ 0, if for any µ, ν ∈ P2(Rd):

F(ρt) ≤ (1 − t)F(µ) + tF(ν) − λt(1 − t)

2
W 2

2 (µ, ν),

where (ρt)t∈[0,1] is a Wasserstein-2 geodesic between µ and ν.
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Examples of geo. convex functionals

1. Potential energy F(µ) =
∫
V (x)dµ(x) with V : Rd → R

convex.

Proof: write F(ρt) along a geodesic ρt = ((1 − t) Id+tT ν
µ )#µ

and use V convex.

2. Negative entropy (non trivial) F(µ) =
∫

log(µ(x))dµ(x).

3. KL w.r.t. log concave distribution F(µ) = KL(µ|π), where
π ∝ exp(−V ), V convex.

Proof:

KL(µ|π) =

∫
log
(µ
π

(x)
)
dµ(x)

=

∫
V (x)dµ(x)︸ ︷︷ ︸
Potential

+

∫
log(µ(x))dµ(x)︸ ︷︷ ︸
(Neg.) Entropy

+C .
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Gradient flows on probability distributions?
Recall that we want to approximate a distribution π by solving

min
µ∈P2(Rd )

F(µ), F(µ) = KL(µ|π).

We have reviewed Euclidean GF of V : Rd → R:

ẋt = −∇V (xt), xt ∈ Rd .

In an analog manner, what is the gradient flow of
F : P2(Rd) → (−∞,+∞]? i.e. something of the form

”µ̇t = −∇W2F(µt)”, µt ∈ P2(Rd).

We need to define both sides of the equality.
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LHS: Velocity field

Let (µt)t≥0 ∈ (P2(Rd))R
+

. What is the time derivative of (µt)t≥0?

Definition: If there exists (vt)t≥0 ∈ (L2(µt))t≥0 such that,

d

dt

∫
φdµt = ⟨∇φ, vt⟩µt

for every test function φ : Rd → R (e.g., C∞(Rd) with compact
support), then (vt)t≥0 is a velocity field of (µt)t≥0.

The velocity field rules the dynamics of (µt)t≥0.
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Continuity Equation

Equivalently, a velocity field (vt)t≥0 of (µt)t≥0 satisfies the PDE:

∂µt

∂t
+ ∇ · (µtvt) = 0, t ≥ 0.

where ∇·A(x) =
d∑

i=1

∂Ai (x)
∂xi

for A(x) = (A1(x), . . . ,Ad(x)), A : Rd → Rd .

Proof: If µt(·) density of µt , for every test function φ : Rd → R,

(1) :
d

dt

∫
φ(x)µt(x)dx =

∫
φ(x)

∂µt

∂t
(x)dx

(2) :
d

dt

∫
φ(x)µt(x)dx

def.
=

∫
⟨∇φ(x), vt(x)⟩Rdµt(x)dx

i.b.p.
= −

∫
φ(x)∇ · (vt(x)µt(x))dx .

This equation describes the dynamics of (µt)t≥0.
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RHS: Wasserstein gradient

Let F : P2(Rd) → (−∞,+∞]. What is the ”gradient” of F at µ?

Definition: Let µ ∈ P2(Rd). Consider a perturbation on the
Wasserstein space (Id+εh)#µ for h ∈ L2(µ).

If a Taylor expansion of F yields:

F((Id+εh)#µ) = F(µ) + ε⟨∇W2F(µ), h⟩µ + o(ε),

then ∇W2F(µ) ∈ L2(µ) is the Wasserstein gradient of F at µ.
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First Variation

In comparison, what is the First Variation of F at µ?

Definition: Let µ ∈ P2(Rd). Consider a linear perturbation
µ + εξ ∈ P2(Rd) for a perturbation ξ.

If a Taylor expansion of F yields:

F(µ + εξ) = F(µ) + ε

∫
F ′(µ)(x)dξ(x) + o(ε),

then F ′(µ) : Rd → R is the First Variation of F at µ.
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Wasserstein gradient = Gradient of First Variation

Typically1,

∇W2F(µ) = ∇F ′(µ).

∇W2F(µ) : Rd → Rd , F ′(µ) : Rd → R.

Proof: Let µt = (Id+th)#µ.
First, expand µε around µ using the continuity equation of (µt)t≥0:

µε = µ + ε−∇ · (µh)︸ ︷︷ ︸
ξ

+o(ε).

Then, expand F(µ + εξ) using the definition of First Variation,
and use an i.b.p. to identify the Wasserstein gradient.

1see [Ambrosio et al., 2008, Th. 10.4.13] for precise statement.
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Examples of Wasserstein gradients

Below: F(µ) −→ F ′(µ) −→ ∇F ′(µ)

1. Potential energy (linear function of µ)

F(µ) =

∫
V (x)dµ(x) −→ V −→ ∇V

2. Negative entropy

F(µ) =

∫
log(µ(x))dµ(x)1 −→ log(µ) + 12 −→ ∇ logµ.

1The Negative entropy F(µ) = +∞ if µ does not have a density.
2(y log y)′ = log y + 1
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Wasserstein gradient of KL

More generally, let

F(µ) =

∫
V (x)dµ(x)︸ ︷︷ ︸
Potential

+

∫
log(µ(x))dµ(x)︸ ︷︷ ︸
(Neg.) Entropy

.

Then, for π ∝ exp(−V ),

KL(µ|π) = F(µ) − F(π)︸ ︷︷ ︸
Constant

.

By additivity, the Wasserstein gradient of KL is given by1

∇W2F(µ) = ∇F ′(µ) = ∇V + ∇ log(µ) = ∇ log
(µ
π

)
.

1See [Ambrosio et al., 2008, Th. 10.4.13] for precise statement.
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Velocity field = negative Wasserstein gradient

Recall that we wanted to define the equation

”µ̇t = −∇W2F(µt)”.

We will ensure that a Descent property holds.

If we look again at the definition of velocity field, we can see
it as a chain rule:

d

dt

∫
φdµt︸ ︷︷ ︸

=F(µt)

= ⟨ ∇φ︸︷︷︸
=∇W2

F(µt)

, vt⟩µt , for F(µ) =

∫
φdµ.

Recall that in Rd , a chain rule for V : Rd → R was written
dV (xt)

dt = ⟨∇V (xt), ẋt⟩Rd .
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More generally, we have the following chain rule for any
F : P2(Rd) → (−∞,+∞] regular enough and (vt)t≥0 velocity
field of (µt)t≥0:

d

dt
F(µt) = ⟨∇W2F(µt), vt⟩µt .

We consider the direction vt = −∇W2F(µt) at each time to
decrease F :

µ0

µt

vt = −∇W2F(µt)

since for this choice of velocity field,

dF(µt)

dt
= −∥∇W2F(µt)∥2

µt
≤ 0.
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The Wasserstein GF of F is ruled by:

vt = −∇W2F(µt)

Equivalently:

∂µt

∂t
= ∇ ·

(
µt∇W2F(µt)

)
,
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Time for Q&A

We now have a break of 5-10 min for questions.
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The Wasserstein GF of F is ruled by:

vt = −∇W2F(µt) (1)

Equivalently:

∂µt

∂t
= ∇ ·

(
µt∇W2F(µt)

)
, (2)

Problem: How to construct such a flow on P2(Rd)?

In the following, we will see some examples of dynamics
(xt)t≥0 ∈ Rd whose law (µt)t≥0 obeys (2). We will call such
dynamics over Rd realizations of the WGF of F .
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Example I - Constant vector field

Let x0 ∼ µ0 and V : Rd → R. Consider the dynamics:

ẋt = −∇V (xt), xt ∈ Rd . (3)

Let µt be the law of xt at each time t ≥ 0. Then, vt = −∇V is a
velocity field of (µt)t≥0.

Proof: Let t ≥ 0. Using the chain rule and (3),

d

dt
φ(xt) = ⟨∇φ(xt), ẋt⟩Rd = ⟨∇φ(xt),−∇V (xt)⟩Rd .

d

dt

∫
φdµt =

d

dt
E [φ(xt)] = E

[
d

dt
φ(xt)

]
= E [⟨∇φ(xt),−∇V (xt)⟩Rd ] = ⟨∇φ,−∇V ⟩µt .

Therefore we can identify vt = −∇V .
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Example I =⇒ WGF of Potential energy

• We have just seen that:

ẋt = −∇V (xt), xt ∈ Rd , xt ∼ µt , (4)w�
∂µt

∂t
= ∇ ·

(
µt∇V

)
. (5)

• In other words, vt = −∇V = −∇W2F(µt) where
F(µ) =

∫
Vdµ is a Potential energy.

Hence (4) realizes the WGF of the Potential energy F (5).
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Example II =⇒ WGF of generic F
More generally, let x0 ∼ µ0 and consider the dynamics:

ẋt = vt(xt).

Let µt be the law of xt at each time t ≥ 0. Then, (vt)t≥0 is a
velocity field of (µt)t≥0.

In particular, let F : P2(Rd) → (−∞,+∞]. The dynamics

ẋt = −∇W2F(µt)(xt), xt ∈ Rd , xt ∼ µt , (6)

realizes the Wasserstein GF of F .

Note that (xt)t≥0 follows a deterministic dynamics1. There may be
other realizations of the Wasserstein GF!

1The randomness only comes from x0 ∼ µ0.
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Example II =⇒ WGF of generic F
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Example III - Brownian motion

Let x0 ∼ µ0 independent of bt ∼ N (0, t Id) the Brownian motion,
and consider the dynamics

xt = x0 +
√

2bt .

Let µt be the law of xt at each time t ≥ 0. Then,
vt = −∇ log(µt) is a velocity field of (µt)t≥0.

Proof: Differentiate φ(xt) using Itô formula, take the expectation
and identify the velocity field from its definition.

In this case, the Continuity Equation is the Heat equation1

∂µt

∂t
= ∇ ·

µt∇ log(µt)︸ ︷︷ ︸
=µt .∇µt/µt

 = ∆µt .

1Using ∆ = ∇ ·∇ (Divergence of Gradient = Laplacian).
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Example III =⇒ WGF of (Neg.) Entropy

• We have just seen that:

xt = x0 +
√

2bt , bt ∼ N (0, t Id), xt ∈ Rd , xt ∼ µt , (7)w�
∂µt

∂t
= ∇ · (µt∇ log(µt)) = ∆µt . (8)

• In other words, vt = −∇ log(µt) = −∇W2F(µt) where
F(µ) =

∫
log(µ(x))dµ(x) is the Negative entropy.

Hence (7) realizes the WGF of the Negative entropy F (8).
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Other realizations of WGF of (Neg.) Entropy
Remark: While we have just seen that

xt = x0 +
√

2bt , bt ∼ N (0, t Id)

realizes the WGF of the Negative entropy, it is also the case of

xt = x0 +
√

2tη, η ∼ N (0, Id). (9)

Indeed, the latter satisfies

ẋt = −∇ log(µt)(xt),

which has the same velocity field vt = −∇ log(µt).

All these processes have the same distribution µt realizing
the WGF of the Negative entropy.
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Example IV - Langevin diffusion

More generally, let x0 ∼ µ0, and consider the dynamics (Langevin
diffusion)

dxt = −∇V (xt)dt +
√

2dbt ,

where (bt)t≥0 is the Brownian motion. Let µt be the law of xt at
each time t ≥ 0. Then, vt = −∇V + ∇ log(µt) = −∇ log

(µt

π

)
where π ∝ exp(−V ), is a velocity field of µt .

Proof: Combine Example I and III.

In this case, the Continuity Equation is the Fokker-Planck
equation.

∂µt

∂t
= ∇ ·

(
µt∇ log

(µt

π

))
= ∆µt + ∇ · (µt∇V ).
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Example IV =⇒ WGF of the KL

• We have just seen that:

xt = −∇V (xt) +
√

2dbt , xt ∈ Rd , xt ∼ µt , (10)w�
∂µt

∂t
= ∇ ·

(
µt∇ log

(µt

π

))
= ∆µt + ∇ · (µt∇V ). (11)

• In other words, vt = −∇ log
(µt

π

)
= −∇W2F(µt) where

F(µ) = KL(µ|π) and π ∝ exp(−V ).

Hence (10) realizes the WGF of the KL divergence F (11).

Remark: Another realization is given by
ẋt = −∇ log

(µt

π

)
(xt), xt ∼ µt .
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Example IV =⇒ WGF of the KL
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√
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Descent property of Wasserstein gradient flows

The Wasserstein GF decreases the objective function.

Using (1) the chain rule, and (2) vt = −∇W2F(µt), we have

dF(µt)

dt

(1)
= ⟨vt ,∇W2F(µt)⟩µt

(2)
= −∥∇W2F(µt)∥2

µt
≤ 0.

This is a fundamental property of the Wasserstein gradient
flow [Ambrosio et al., 2008, Chap 11].
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Evolution Variational Inequality (EVI)

Assume F λ-strongly geo. convex. Then, the Wasserstein GF
satisfies the following variational inequality: for every ν ∈ P2(Rd),

d

dt
W 2

2 (µt , ν) ≤ −2(F(µt) −F(ν)) − λW 2
2 (µt , ν).

The EVI characterizes the WGF when F is geo. convex. Note that
it does not use ∇W2F .
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Analysis and Design of Sampling algorithms

A take home message.

As in Optimization, time discretizations of the Wasserstein
GF can be seen as Sampling algorithms (= optimization
algorithms in P2(Rd)).

This point of view allows to write conjectures:
a Sampling algorithm that is a discretization of the Wasserstein GF
of the KL should satisfy a Descent lemma and/or a discrete EVI.

Furthermore, we can design Sampling algorithms by discretizing
Wasserstein GF.
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Sampling as Optimization

π(x) ∝ exp(−V (x)),

π = arg min
µ∈P2(Rd )

KL(µ|π) = arg min
µ∈P2(Rd )

F(µ),

where

F(µ) :=

∫
V (x)dµ(x)︸ ︷︷ ︸
Potential

+

∫
log(µ(x))dµ(x)︸ ︷︷ ︸
(Neg .)Entropy

satisfies
F(µ) − F(π)︸ ︷︷ ︸

Constant

= KL(µ|π).
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Time discretizations of the Wasserstein GF
Let γ > 0 a step-size.

• Wasserstein gradient descent or Forward Euler (explicit):

µm+1 = (Id−γ ∇W2F(µm))# µm

Problem: If F(µ) = KL(µ|π), ∇W2F(µm) = ∇ log
(µm

π

)
requires

the knowledge of the density µm.
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• JKO scheme [Jordan et al., 1998] (F geo. convex):

µm+1 ∈ JKOγF (µm) := arg min
µ∈P2(Rd )

{
γF(µ) +

1

2
W 2

2 (µ, µm)

}
.

i.e. Backward Euler (implicit) [SKL20].

• Splitting scheme [SKL20] (F = F1 + F2, F2 geo. convex):

µm+ 1
2

= (Id−γ ∇W2F1(µm))#µm

µm+1 = JKOγ F2

(
µm+ 1

2

)
Problem: these (unbiased) schemes are also hard to implement
(global optimization subroutine).
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Langevin Monte Carlo

Langevin Monte Carlo (LMC) to sample from π ∝ exp(−V ):

xm+1 = xm − γ∇V (xm) +
√

2γηm,

where γ > 0 and (ηm)m≥0 i.i.d. standard Gaussian.

Intuition: Discretization of Langevin diffusion

dxt = −∇V (xt)dt +
√

2dbt .

Can be used for analysis of Langevin
[Durmus and Moulines, 2017, Dalalyan, 2017].
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What’s happening over the Wasserstein space?

Rewrite LMC as

xm+ 1
2

= xm − γ∇V (xm)

xm+1 = xm+ 1
2

+
√

2γηm.

Let xm ∼ µm.

LMC can be written as a Forward Flow splitting scheme
[Wibisono, 2018, Durmus et al., 2019, Bernton, 2018]
(F = Potential + Entropy)

µm+ 1
2

= (Id−γ ∇V︸︷︷︸
= ∇W2

Potential

)#µm

µm+1 = flowγ,Entropy(µm+ 1
2
)

Remark: this splitting scheme is biased.
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Consequence: Descent lemma

LMC almost decreases the KL [Vempala and Wibisono, 2019],
[BCE+22]:

F(µm+1) −F(µm)

γ
≤ −1

2
∥∇W2F(µ̂m)∥2

µ̂m
+ 4L2dγ,

where µ̂m ”between” µm and µm+1.

Error term 4L2dγ: LMC is biased, i.e., π is not an invariant
distribution.
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Nonconvex rates for Langevin Monte Carlo
Nonconvex rates can be obtained using Descent lemma, noting
that

∥∇W2F(µ)∥2
µ =

∥∥∥∇ log
(µ
π

)∥∥∥2

µ
:= FD(µ|π),

1. we first obtain

1

M

M−1∑
m=0

FD(µ̂m|π) ≤ 2KL(µ0|π)

γM
+ 8L2dγ.

2. If π satisfies Log Sobolev inequality with λ, i.e.:

∀µ ∈ P2(Rd), KL(µ|π) ≤ 1

2λ
FD(µ|π),

then [Vempala and Wibisono, 2019],

KL(µM |π) ≤ exp(−γMλ)KL(µ0|π) +
8L2dγ

λ
.
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Gradient dominance

Log Sobolev inequality is a gradient dominance condition for KL.
[Otto and Villani, 2000, Blanchet and Bolte, 2018].

∀µ ∈ P2(Rd), KL(µ|π) ≤ 1

2λ
FD(µ|π).

• V is λ-strongly convex ⇒ π ∝ exp(−V ) satisfies Log Sobolev
with λ (Bakry–Emery theorem)

• Log Sobolev ⇏ V convex.
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Non log concave π satisfying Log Sobolev

Example: Consider a standard Gaussian distribution

π(x) ∝ exp

(
−∥x∥2

2

)
,

i.e. π ∝ exp(−V ) with V 1-strongly convex, i.e. π is (1-)strongly
log-concave.

A small (bounded) perturbation of π is not necessarily log-concave,
but still verifies a Log Sobolev inequality (Holley–Stroock
perturbation theorem).

Figure from [Vempala and Wibisono, 2019].
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Convex case - Discrete EVI

Assume V λ-strongly convex. Then, the Langevin algorithm
almost satisfies a discrete EVI [Durmus et al., 2019]; i.e. for every
ν ∈ P2(Rd),

W 2
2 (µm+1, ν) −W 2

2 (µm, ν)

γ
≤− 2(F(µm+1) −F(ν)) − λW 2

2 (µm, ν)

+ 2γLd .

Error term 2γLd : LMC is biased, i.e., π is not an invariant
distribution.
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Convex rates for Langevin Monte Carlo

Convex rates can be obtained using discrete EVI, noting that
F(µ) −F(π) = KL(µ|π),

1. for λ ≥ 0 we can obtain

KL(µ̄M |π) ≤ W 2
2 (µ0, π)

2γM
+ γLd ,

where µ̄M = 1
M

M−1∑
m=0

µm,

2. and, if λ > 0,

W 2
2 (µM , π) ≤ (1 − γλ)MW 2

2 (µ0, π) +
2γLd

λ
.
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Stein Variational Gradient Descent (SVGD)

SVGD [Liu and Wang, 2016] to sample from π ∝ exp(−V ).

SVGD updates the positions of a set of N particles x1, . . . , xN , i.e.
for any i = 1, . . . ,N, at each time m ≥ 0:

x im+1 = x im − γ

N

N∑
j=1

∇V (x jm)k(x im, x
j
m) −∇2k(x im, x

j
m),

where k is a kernel associated to a Reproducing Kernel Hilbert
Space Hk .
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Reproducing kernel Hilbert Space

• Hilbert space of functions Hk (here, Hk ⊂ L2(µ) for every µ)

• For every x , k(x , ·) ∈ Hk (k(x , ·) : Rd → R)

• Reproducing property: for every f ∈ Hk , f (x) = ⟨f , k(x , ·)⟩Hk
.

Example: k(x , y) = exp
(
−∥x − y∥2

)
.

90 / 105



Introduction Optimization over Rd Optimization over P2(Rd ) Sampling algorithms Conclusion

Two dimensional example

SVGD

Simulation from [KAFMA21]. Pytorch code available at
https://github.com/pierreablin/ksddescent.
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What’s happening over the Wasserstein space

Let µm = 1
N

N∑
j=1

δ
x jm
. Then,

µm+1 = (Id−γhµm)# µm,

where hµ :=
∫
∇V (x)k(x , ·) −∇1k(x , ·)dµ(x).

Actually,

hµ = Pµ∇ log
(µ
π

)
, where Pµ : L2(µ) → Hk , f 7→

∫
f (x)k(x , ·)dµ(x).
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Gradient descent interpretation
A Taylor expansion around µ for h ∈ Hk , if µ has a density
yields [Liu, 2017]:

KL((Id+εh)#µ|π) = KL(µ|π) + ε ⟨hµ, h⟩Hk
+ o(ε).

Therefore, hµ plays the role of the Wasserstein gradient in Hk .
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Consequence: Descent lemma

We study
µm+1 = (Id−γhµm)# µm

when µm has a density (i.e. ”mean field” or ”population limit” =
SVGD with an infinite number of particles).

In this case, for a bounded k , SVGD decreases the KL
[Liu, 2017, Gorham et al., 2020], [KSA+20, SSR21]:

F(µm+1) −F(µm)

γ
≤ −1

2
∥hµm∥2

Hk
.
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Nonconvex rate for SVGD

Nonconvex rates can be obtained using Descent lemma, noting
that

∥hµm∥2
Hk

=
∥∥∥Pµm∇ log

(µm

π

)∥∥∥2

Hk

= KSD2(µm|π).1

We obtain

KSD2(µ̄M |π) ≤ 2KL(µ0|π)

γM
, µ̄M =

1

M

M−1∑
m=0

µm.

See ”A Convergence Theory for SVGD in the Population Limit under

Talagrand’s Inequality T1” A. Salim, L. Sun, P. Richtárik. ICML 2022. In

Session 9 Track 8, Thursday 4:50 PM.
1[Liu et al., 2016, Chwialkowski et al., 2016, Gorham and Mackey, 2017].
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Approaches based on the JKO (I)

Recall that the JKO of F at µm ∈ P2(Rd) writes

arg min
µ∈P2(Rd )

F(µ) +
1

2γ
W 2

2 (µm, µ)

If F is the KL

• Blob method considers a regularized KL whose gradient flow
can be approximated with particles [Carrillo et al., 2019].

• Restricted Gaussian Oracle [Lee et al., 2021b], [CCSW22]
implements in closed-form the JKO of F if the starting point
is a Dirac
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Approaches based on the JKO (II)

For a general F (e.g. the KL), fast methods for computing the
JKO are being developed (do not involve discretization of the
domain)

• using input-convex neural networks (ICNN) to approximate
the transport map
[Mokrov et al., 2021, Alvarez-Melis et al., 2021]

• using parametric maps [Fan et al., 2021]

• other approaches based on deep learning
[Hwang et al., 2021, Shen et al., 2022]

• change the underlying metric [Peyré, 2015]
[Bonet et al., 2021]
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Extensions to other optimization techniques
• Accelerated methods: accelerated LMC [Ma et al., 2019,

Dalalyan and Riou-Durand, 2020, Shen and Lee, 2019],
accelerated particle methods [Liu et al., 2019]

• ”Mirror-descent” like sampling algorithms to sample from a
distribution with compact support: Mirror Langevin
[Hsieh et al., 2018, Zhang et al., 2020, Ahn and Chewi, 2021,
Li et al., 2022], Mirror SVGD [Shi et al., 2021]

• ”Proximal” algorithms for non-smooth potentials V (i.e. no
gradients of V) [Durmus et al., 2019, Wibisono, 2019],
[SKR19, SR20]

• Variance reduction for potentials V written as finite sums
[Ding and Li, 2021, Zou et al., 2018, Zou et al., 2019,
Dubey et al., 2016, Huang and Becker, 2021], [BCE+22].
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Optimization of alternative functionals than the KL

• SVGD can be seen as a gradient flow of the Chi-square
divergence [Chewi et al., 2020]

• [KAFMA21] propose to consider the Wasserstein gradient flow
the Kernel Stein Discrepancy
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Conclusion

• Sampling can be seen as an optimization problem on a
”Wasserstein manifold”

• This point of view enables to leverage its geometry and
Wasserstein Gradient Flows (GF)

• Their discretizations (space/time) lead to different algorithms:
LMC is a splitting (forward-flow) scheme, SVGD is a gradient
descent

• One can design Sampling algorithms by discretizing
Wasserstein GF

• These can be analyzed adapting optimization techniques (e.g.
proof of convergence of gradient descent) to the Wasserstein
space
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Some limitations of the framework

• The presented framework does not cover all sampling
algorithms, e.g. involving dynamics such as accept/reject
steps, birth and death of particles...

• It does not cover neither the analysis for finite number of
particles (last iterates of Langevin Monte Carlo, SVGD
stationary particles...)

See ”Accurate Quantization of Measures via Interacting
Particle-based Optimization” L. Xu, A. Korba, D. Slepcev. ICML
2022. In Session 3 Track 6, Tuesday 5:40 PM.

103 / 105



Introduction Optimization over Rd Optimization over P2(Rd ) Sampling algorithms Conclusion

Open problems and future directions
Some theoretical questions remain largely open:

• Complexity lower bounds for sampling
problems [Lee et al., 2021a, Chewi et al., 2022]

• Convex rates for SVGD/ Stein log Sobolev
inequality [Duncan et al., 2019]

• While many works on sampling have mixed first-order
optimization and sampling ideas, there may remain some
issues regarding implementation or analysis (there is always a
balance between both aspects)

... and also practical considerations:

• improving convergence (for π multimodal, high-dimensional)

• improving scaling in the number of particles
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Time for Q&A

Questions?

We wish to thank ICML for travel support, and many people for
feedback: Pierre-Cyril Aubin-Frankowski, Sebastien Bubeck, Sinho

Chewi, Alain Durmus, Eric Moulines, Philippe Rigollet.

105 / 105



Bibliography

References I

Ahn, K. and Chewi, S. (2021).

Efficient constrained sampling via the mirror-langevin algorithm.
Advances in Neural Information Processing Systems, 34:28405–28418.

Alvarez-Melis, D., Schiff, Y., and Mroueh, Y. (2021).

Optimizing functionals on the space of probabilities with input convex neural networks.
arXiv preprint arXiv:2106.00774.

Ambrosio, L., Gigli, N., and Savaré, G. (2008).
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Forward method for the KL

Problem: ∇W2 KL(µm|π) = ∇ log
(
µm

π

)
where µn is unknown.

While ∇ log π is known, ∇ logµn has to be estimated from N particles
X 1
n , . . . ,X

N
n , e.g. with1 :

1. Kernel Density Estimation (KDE):

µm(.) ≈ 1

N

N∑
i=1

k(X i
m − .)

Then,

−∇W2 KL(µm|π)(.) ≈ −

(
∇V (.) +

∑N
i=1 ∇k(.− X i

m)∑N
i=1 k(.− X i

m)

)

Remark: it is not the W2 gradient of some functional (see the next slide)
1assume a symmetric, translation invariant kernel
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2. Blob Method [Carrillo et al., 2019]:
Instead of

U(µ) =

∫
log(µ(x))dµ(x),

consider

Uk(µ) =

∫
log(k ⋆ µ(x))dµ(x), where k ⋆ µ(x) =

∫
k(x − y)dµ(y).

Then,

∂Uk(µ)

∂µ
(.) = k ⋆

(
µ

k ⋆ µ

)
+ log(k ⋆ µ)

=⇒ ∇W2Uk(µ) = = ∇k ⋆

(
µ

k ⋆ µ

)
+ ∇ log(k ⋆ µ)︸ ︷︷ ︸

∇k⋆µ
k⋆µ

=⇒ ∇W2 KL(µm|π)(.) ≈ − (∇V (.)+

N∑
i=1

∇k(.− X i
m)∑N

z=1 k(X i
m − X z

m)
+

∑N
i=1 ∇k(.− X i

m)∑N
i=1 k(.− X i

m)

)
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SVGD trick and the kernel integral operator

We assume
∫
Rd×Rd k(x , x)dµ(x) < ∞ for any µ ∈ P2(Rd).

=⇒ Hk ⊂ L2(µ).

For instance assume ∥k(x , .)∥2
Hk

= k(x , x) ≤ B2, then for f ∈ Hk

∥f ∥2
L2(µ) =

∫
∥f (x)∥2dµ(x) =

∫
⟨f , k(x , .)⟩2

Hk
dµ(x)

≤ ∥f ∥2
Hk

∫
k(x , x)dµ(x) ≤ B2∥f ∥2

Hk

Then, the injection from ι : Hk → L2(µ) admits an adjoint ι⋆ = Sµ,
where Sµ : L2(µ) → Hk is defined by:

Sµf (·) =

∫
k(x , .)f (x)dµ(x), f ∈ L2(µ).

We have for any f , g ∈ L2(µ) ×Hk

⟨f , ιg⟩L2(µ) = ⟨ι∗f , g⟩Hk
= ⟨Sµf , g⟩Hk

. We will denote Pµ = ι ◦ Sµ.
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The Descent property is fundamental
Rewrite the descent property as

dV (xt)

dt
≤ −1

2
∥∇V (xt)∥2 − 1

2
∥ẋt∥2.

This inequality characterizes the gradient
flow [De Giorgi et al., 1980, De Giorgi, 1993].

Indeed, any curve (xt)t≥0 satisfying this inequality also satisfies

⟨ẋt ,∇V (xt)⟩ ≤ −1

2
∥∇V (xt)∥2 − 1

2
∥ẋt∥2,

which implies
ẋt = −∇V (xt),

using ⟨a, b⟩ ≥ 1
2∥a∥

2 + 1
2∥b∥

2 =⇒ a = b.
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⟨ẋt ,∇V (xt)⟩ ≤ −1

2
∥∇V (xt)∥2 − 1

2
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