
Convergence of a constant step stochastic
Douglas Rachford algorithm

A. Salim, P. Bianchi, W. Hachem

1 Introduction
The stochastic gradient algorithm aims to minimize a cost function that can be

written as an expectation x 7→ E(f(ξ, x)), where ξ is a random variable and f(ξ, . ) :
RN → R is a convex differentiable function. It can be used in the context where the ex-
pectation cannot be computed, but is revealed across time by the observation of i.i.d co-
pies (ξn) of ξ. The stochastic gradient algorithm writes xn+1 = xn−γn∇f(ξn+1, xn)
where (γn) is a positive sequence of step-size. In the context of online machine lear-
ning or adaptive signal processing, we often suppose that the step size is constant, i.e
γn ≡ γ. In this case the process (xn) generally doesn’t almost surely converge as
n → ∞, but stay close with high probability to the set of minimizers (assumed to be
not empty) in a double asymptotic regime : n→ +∞ and γ → 0 (see [2]).

The aim of this work is to analyze a stochastic version of the well known Douglas-
Rachford algorithm. Let F : RN → R be a proper, convex, lower semi-continuous
(lsc) function (notation : F ∈ Γ0(RN )). We denote by ∂F the subdifferential of F . Let
G ∈ Γ0(RN ), assume that F + G has a minimizer, i.e that the set Z(∂F + ∂G) =
{x ∈ RN such that 0 ∈ ∂F (x) + ∂G(x)} of zeroes of ∂F + ∂G is not empty. The
Douglas-Rachford algorithm is written

yn+1 = proxγF (xn)

zn+1 = proxγG(2yn+1 − xn)

xn+1 = xn + zn+1 − yn+1 (1)

where proxγG is the proximity operator of G and γ > 0 a step. If the standard quali-
fication condition 0 ∈ ri(dom(F )− dom(G)) and assuming that Z(∂F + ∂G) is non
empty, the sequence (yn) converge to an element of Z(∂F + ∂G) as n→∞.

2 The constant step Douglas Rachford algorithm
Consider a probability space (Ξ,F , ρ). We say that a mapping f : RN × Ξ →

(−∞,+∞] is a normal convex integrand if f( . , s) ∈ Γ0(RN ) for every s ∈ Ξ and if
f(x, . ) is measurable for every x ∈ RN .

From now on, assume that the mapping F andG are of the formF (x) = E(f(x, ξ))
and G(x) = E(g(x, ξ)) where f, g are normal convex integrands. The aim of the adap-
tive Douglas Rachford algorithm is to solve

min
x∈RN

F (x) +G(x). (2)
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Denote by (ξn : n ∈ N) a sequence of iid copies of the r.v. ξ. In the sequel, we
use the notation fn := f( . , ξn) and gn := g( . , ξn). The adaptive Douglas-Rachford
algorithm is given by

yn+1 = proxγ,fn+1
(xn)

zn+1 = proxγ,gn+1
(2yn+1 − xn)

xn+1 = xn + zn+1 − yn+1 . (3)

This algorithm is of interest if the functions F,G are not available, or hard to com-
pute, or the computation of their proximity operator is computationally demanding. In
these context, we replace the knowledge of the functions F and G by noisy versions
fn and gn. An applications of of this algorithm can be find in [?] to solve a tracking
problem.

The problem (2) is equivalent to the problem of finding an element in Z(∂F+∂G).
Since the algorithm (3) is a constant step size algorithm, it is not expected to converge
to Z(∂F + ∂G), but we will show in the sequel that when n → +∞ and γ → 0 the
iterates xn stay close to Z(∂F + ∂G).

Theorem 1. [?] Assume that F (x) + G(x) −→‖x‖→+∞ +∞, that ρ-a.s f(·, s) is
differentiable and that there exists L > 0 such that ρ-a.s ∇f(·, s) is L-Lipschitz conti-
nuous.

Then, under mild additional assumptions, for all r.v x0 such that E[x20] <∞,

lim sup
n→∞

1

n+ 1

n∑
k=0

P [d(xk, Z(∇F + ∂G)) > ε] −−−→
γ→0

0 .

The assumptions of the theorem deserve some comments.

3 Proof of the convergence
Our approach to prove this theorem is first to study the dynamical behavior of the

iterates. Namely, we adapt the O.D.E method, well known in the literature of stochas-
tic approximation ([2]). Consider xγ the continuous time process obtained by linearly
interpolating with time interval γ the iterates of the stochastic proximal gradient algo-
rithm with step γ. We show that xγ weakly converges to x as γ → 0 over R+, where x
is the unique solution to the Differential Inclusion (see [1])ß

ẋ(t) ∈ −(∇F + ∂G)(x(t))
x(0) = x0 ∈ D

The latter Differential Inclusion induces a map Φ : D × R+ → D, (x0, t) 7→ x(t)
that can be extended to a semi-flow over D, still denoted by Φ.

The weak convergence is not enough to study the long term behavior of the iterates
(xn) : a stability result is needed. We then look at (xn) as a Feller Markov chain
with transition kernel Πγ . The assumptions of the Theorem 1 ensures that the set Iγ
of invariant measures of the Markov kernel Πγ is not empty and that the set Inv =
∪γ∈(0,γ0]Iγ is tight for all γ0 > 0. Combined with the "dynamical behavior result" (the
weak convergence of xγ to x), this shows that all cluster point of Inv as γ → 0 is an
invariant measure for the semi-flow Φ. The conclusion of theorem 1, and other results,
follow at once from this fact.
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