
1

Snake: a Stochastic Proximal Gradient Algorithm
for Regularized Problems over Large Graphs

Adil Salim, Pascal Bianchi and Walid Hachem

Abstract—A regularized optimization problem over a large
unstructured graph is studied, where the regularization term
is tied to the graph geometry. Typical regularization examples
include the total variation and the Laplacian regularizations
over the graph. When the graph is a simple path without loops,
efficient off-the-shelf algorithms can be used. However, when the
graph is large and unstructured, such algorithms cannot be used
directly. In this paper, an algorithm, referred to as “Snake”,
is proposed to solve such regularized problems over general
graphs. The algorithm consists in properly selecting random
simple paths in the graph and performing the proximal gradient
algorithm over these simple paths. This algorithm is an instance
of a new general stochastic proximal gradient algorithm, whose
convergence is proven. Applications to trend filtering and graph
inpainting are provided among others. Numerical experiments
are conducted over large graphs.

I. INTRODUCTION

Many applications in the fields of machine learning [1]–[3],
signal and image restoration [4]–[6], or trend filtering [7]–[12]
require the solution of the following optimization problem. On
an undirected graph G = (V,E) with no self loops, where
V = {1, . . . , N} represents a set of N nodes (N ∈ N∗) and
E is the set of edges, find

min
x∈RV

F (x) +R(x, φ), (1)

where F is a convex and differentiable function on RV
representing a data fitting term, and the function x 7→ R(x, φ)
represents a regularization term of the form

R(x, φ) =
∑
{i,j}∈E

φ{i,j}(x(i), x(j)) ,

where φ = (φe)e∈E is a family of convex and symmetric
R2 → R functions. The regularization term R(x, φ) will be
called a φ-regularization in the sequel. These φ-regularizations
often promote the sparsity or the smoothness of the solution.
For instance, when φe(x, x′) = we|x−x′| where w = (we)e∈E
is a vector of positive weights, the function R(·, φ) coincides
with the weighted Total Variation (TV) norm. This kind of
regularization is often used in programming problems over
a graph which are intended to recover a piecewise constant
signal across adjacent nodes [8]–[15]. Another example is

A. Salim and P. Bianchi are with the LTCI, Télécom Paris-
Tech, Université Paris-Saclay, 75013, Paris, France (adil.salim,
pascal.bianchi@telecom-paristech.fr).

W. Hachem is with the CNRS / LIGM (UMR 8049), Université Paris-Est
Marne-la-Vallée, France (walid.hachem@u-pem.fr).

This work was supported by the Agence Nationale pour la Recherche,
France, (ODISSEE project, ANR-13-ASTR-0030) and by the Labex Digiteo-
DigiCosme (OPALE project), Université Paris-Saclay.

The authors are grateful to TeraLab DataScience for their material support.

the Laplacian regularization φe(x, x
′) = (x − x′)2, or its

normalized version obtained by rescaling x and x′ by the
degrees of each node in e respectively. Laplacian regularization
tends to smoothen the solution in accordance with the graph
geometry [1], [2].

The Forward-Backward (or proximal gradient) algorithm
is one of the most popular approaches towards solving
Problem (1). This algorithm produces the sequence of iterates

xn+1 = proxγR(·,φ)(xn − γ∇F (xn)) , (2)

where γ > 0 is a fixed step, and where

proxg(y) = arg min
x

(
g(x) +

1

2
‖x− y‖2

)
is the well-known proximity operator applied to the proper,
lower semicontinuous (lsc), and convex function g (here ‖ ·‖ is
the standard Euclidean norm). When F satisfies a smoothness
assumption, and when γ is small enough, it is indeed well-
known that the sequence (xn) converges to a minimizer of (1),
assuming this minimizer exists.

Implementing the proximal gradient algorithm requires the
computation of the proximity operator applied to R(·, φ) at
each iteration. When N is large, this computation is in general
affordable only when the graph exhibits a simple structure.
For instance, when R(·, φ) is the TV norm, the so-called taut-
string algorithm is an efficient algorithm for computing the
proximity operator when the graph is one-dimensional (1D) [16]
(see Figure 1) or when it is a two-dimensional (2D) regular
grid [13]. Similar observations can be made for the Laplacian
regularization [17], where, e.g., the discrete cosine transform
can be implemented. When the graph is large and unstructured,
these algorithms cannot be used, and the computation of the
proximity operator is more difficult ([8], [18]).

This problem is addressed in this paper.1 Towards obtaining
a simple algorithm, we first express the functions F (·) and
R(·, φ) as the expectations of functions defined on a random
walks in the graph, paving the way for a randomized version of
the proximal gradient algorithm. Stochastic online algorithms
in the spirit of this algorithm are often considered as simple
and reliable procedures for solving high dimensional machine
learning problems, including in the situations where the
randomness is not inherent to these problems [20], [21]. One
specificity of the algorithm developed here lies in that it

1Note that a preliminary version of this work was published in [19], without
proofs, and only focused on the TV-regularization problem. In comparison,
the present paper provides proofs, extends the results to more general φ-
regularizations, includes an arbitrary data-fitting term F , provides discussion
about the complexity and the choice of hyperparameters and, finally, provides
more numerical results and applicative contexts.

2

reconciles two requirements: on the one hand, the random
versions of R(·, φ) should be defined on simple paths, i.e., on
walks without loops (see Figure 1), in a way to make benefit
of the power of the existing fast algorithms for computing the
proximity operator. Owing to the existence of a procedure for
selecting these simple paths, we term our algorithm as the
“Snake” algorithm. On the other hand, the expectations of the
functions handled by the optimization algorithm coincide with
F (·) and R(·, φ) respectively (up to a multiplicative constant),
in such a way that the algorithm does not introduce any bias
on the estimates.

Fig. 1. Left: General graph on which is colored the simple path 3-1-0-6-7.
Right: 1D-graph.

There often exists efficient methods to compute the proximity
operator of φ-regularization over 1D-graphs. The algorithm
Snake randomly selects simple paths in a general graph in
order to apply the latter 1D efficient methods over a general
graph.

Actually, the algorithm Snake will be an instance of
a new general stochastic approximation algorithm that we
develop in this paper. In some aspects, this general stochastic
approximation algorithm is itself a generalization of the random
Forward-Backward algorithm studied in [22].

Before presenting our approach, we provide an overview of
the literature dealing with our problem. First consider the case
where R(·, φ) coincides with the TV norm. As said above,
fast methods exist when the graph has a simple structure. We
refer the reader to [13] for an overview of iterative solvers
of Problem (1) in these cases. In [23], the author introduces
a dynamical programming method to compute the proximity
operator on a 1D-graph with a complexity of order O(N). Still
in the 1D case, Condat [16] revisited recently an algorithm that
is due to Mammen and Van De Geer [24] referred to as the taut-
string algorithm. The complexity of this algorithm is O(N2)
in the worst-case scenario, and O(N) in the most realistic
cases. The taut-string algorithm is linked to a total variation
regularized problem in [25]. This algorithm is generalized to
2D-grids, weighted TV norms and `p TV norms by Barbero and
Sra in [13]. To generalize to 2D-grids, the TV regularization
can be written as a sum of two terms on which one can apply
1D methods, according to [26] and [27]. Over general graphs,
there is no immediate way to generalize the taut string method.
The problem of computing the TV-proximity operator over a
general graph is addressed in [8].

The authors of [8] suggest to solve the problem using a
projected Newton algorithm applied to the dual problem. It
is observed that, empirically, this methods performs better
than other concurrent approaches. As a matter of fact, this

statement holds when the graph has a moderate size. As far
as large graphs are concerned, the iteration complexity of the
projected Newton method can be a bottleneck. To address
this problem, the authors of [14] and [3] propose to solve the
problem distributively over the nodes using the Alternating
Direction Method of Multipliers (ADMM).

In [12] the authors propose to compute a decomposition of
the graph in 1D-graphs and then solve Problem (1) by means
of the TV-proximity operators over these 1D-graphs. Although
the decomposition of the graph is fast in many applications, the
algorithm [12] relies on an offline decomposition of the whole
graph that needs a global knowledge of the graph topology.
The Snake algorithm obtains this decomposition online. In [11],
the authors propose a working set strategy to compute the TV-
proximity operator. At each iteration, the graph is cut in two
well-chosen subgraphs and a reduced problem of (1) is deduced
from this cut. The reduced problem is then solved efficiently.
This method has shown speed-ups when G is an image (i.e a
two dimensional grid). Although the decomposition of the graph
is not done during the preprocessing time, the algorithm [11]
still needs a global knowledge of the graph topology during the
iterations. On the contrary, the Snake algorithm only needs a
local knowledge. Finally, in [9], the authors propose to replace
the computation of the TV-proximity operator over the graph G
by the computation of the TV-proximity operator over an 1D-
subgraph of G well chosen. This produces an approximation of
the solution whereas the Snake algorithm is proven to converge
to the exact solution.

In the case where R(·, φ) is the Laplacian regularization,
the computation of the proximity operator of R reduces to the
resolution of a linear system (L + αI)x = b where L is the
Laplacian matrix of the graph G and I the identity matrix. On
an 1D-graph, the latter resolution can be done efficiently and
relies on an explicit diagonalization of L ([17]) by means of the
discrete cosine transform, which take O(N log(N)) operations.
Over general graphs, the problem of computing the proximity
operator of the Laplacian regularization is introduced in [2].
There exist fast algorithms to solve it due to [28]. They are
based on recursively preconditioning the conjugate gradient
method using graph theoretical results [18]. Nevertheless, the
preconditioning phase which may be demanding over very large
graphs. Compared to [18], our online method Snake requires
no preprocessing step.

II. OUTLINE OF THE APPROACH AND PAPER ORGANIZATION

The starting point of our approach is a new stochastic
optimization algorithm that has its own interest. This algorithm
will be presented succinctly here, and more rigorously in
Sec. III below. Given an integer L > 0, let ξ = (ξ1, . . . , ξL) be
a random vector where the ξi are valued in some measurable
space. Consider the problem

min
x

L∑
i=1

Eξ
[
fi(x, ξ

i) + gi(x, ξ
i)
]

(3)

where the fi(·, ξi) are convex and differentiable, and the
gi(·, ξi) are convex. Given γ > 0, define the operator
Tγ,i(x, s) = proxγgi(·,s)(x − γ∇fi(x, s)). Given a sequence

3

(ξn) of independent copies of ξ, and a sequence of positive
steps (γn) ∈ `2 \ `1, we consider the algorithm

xn+1 = Tγn+1
(xn, ξn+1) , (4)

where

Tγ(·, (s1, . . . , sL)) = Tγ,L(·, sL) ◦ · · · ◦ Tγ,1(·, s1)

and where ◦ stands for the composition of functions: f ◦g(·) =
f(g(·)). In other words, an iteration of this algorithm consists
in the composition of L random proximal gradient iterations.
The case where L = 1 was treated in [22].

Assuming that the set of minimizers of the problem is non
empty, Th. 1 below states that the sequence (xn) converges
almost surely to a (possibly random) point of this set. The
proof of this theorem which is rather technical is deferred
to Sec. VII. It follows the same canvas as the approach of
[22], with the difference that we are now dealing with possibly
different functions (fi, gi) and non-independent noises ξi for
i ∈ {1, . . . , L}.

We now want to exploit this stochastic algorithm to develop a
simple procedure leading to a solution of Problem (1). This will
be done in Sec. IV and will lead to the Snake algorithm. The
first step is to express the function R(·, φ) as the expectation
of a function with respect to a finite random walk. Given an
integer M > 0 and a finite walk s = (v0, v1, . . . , vM) of length
M on the graph G, where vi ∈ V and {vi, vi+1} ∈ E, write

R(x, φs) =

M∑
i=1

φ{vi−1,vi}(x(vi−1), x(vi)) .

Now, pick a node at random with a probability proportional to
the degree (i.e., the number of neighbors) of this node. Once this
node has been chosen, pick another one at random uniformly
among the neighbors of the first node. Repeat the process of
choosing neighbors M times, and denote as ξ ∈ VM+1 the
random walk thus obtained. With this construction, we get that

1
|E|R(x, φ) = 1

MEξ[R(x, φξ)] using some elementary Markov
chain formalism (see Prop. 2 below).

In these conditions, a first attempt of the use of Algorithm (4)
is to consider Problem (1) as an instance of Problem (3) with
L = 1, f1(x, ξ) = 1

|E|F (x), and g1(x, ξ) = 1
MR(x, φξ). Given

an independent sequence (ξn) of walks having the same law
as ξ and a sequence (γn) of steps in `2 \ `1, Algorithm 4
boils down to the stochastic version of the proximal gradient
algorithm

xn+1 = proxγn+1
1
MR(·,φξn+1

)(xn − γn+1
1

|E|
∇F (xn)) . (5)

By Th. 1 (or by [22]), the iterates xn converge almost surely
to a solution of Problem (1).

However, although simpler than the deterministic algo-
rithm (2), this algorithm is still difficult to implement for many
regularization functions. As said in the introduction, the walk
ξ is often required to be a simple path. Obviously, the walk
generation mechanism described above does not prevent ξ from
having repeated nodes. A first way to circumvent this problem
would be to generate ξ as a loop-erased walk on the graph.
Unfortunately, the evaluation of the corresponding distribution

is notoriously difficult. The generalization of Prop. 2 to loop-
erased walks is far from being immediate.

As an alternative, we identify the walk ξ with the concate-
nation of at most M simple paths of maximal length that we
denote as ξ1, . . . , ξM , these random variables being valued in
the space of all walks in G of length at most M :

ξ = (ξ1, ξ2, . . . , ξM) .

Here, in the most frequent case where the number of simple
paths is strictly less than M , the last ξi’s are conventionally set
to a trivial walk, i.e., a walk with one node and no edge. We also
denote as `(ξi) the length of the simple path ξi, i.e., the number
of edges in ξi. We now choose L = M , and for i = 1, . . . , L,
we set fi(x, ξi) = `(ξi)

L|E|F (x) and gi(x, ξ
i) = 1

LR(x, φξi) if
`(ξi) > 0, and fi(x, ξi) = gi(x, ξ

i) = 0 otherwise. With this
construction, we show in Sec. IV that 1

|E| (F (x) +R(x, φ)) =∑L
i=1 Eξ[fi(x, ξi) + gi(x, ξ

i)] and that the functions fi and gi
fulfill the general assumptions required for the Algorithm (4)
to converge to a solution of Problem (1). In summary, at each
iteration, we pick up a random walk of length L according
to the procedure described above, split it into simple paths of
maximal length, and then we successively apply the proximal
gradient algorithm to these simple paths.

After recalling the contexts of the taut-string and the
Laplacian regularization algorithms (Sec. V), we simulate
Algorithm (4) in several application contexts. First, we study
the so called graph trend filtering [8], with the parameter k
defined in [8] set to one. Then, we consider the graph inpainting
problem [1], [2], [15]. These contexts are the purpose of Sec. VI.
Finally, a conclusion and some future research directions are
provided in Sec. VIII.

III. A GENERAL STOCHASTIC PROXIMAL GRADIENT
ALGORITHM

Notations. We denote by (Ω,F ,P) a probability space and
by E[·] the corresponding expectation. We let (Ξ,X) be an
arbitrary measurable space. We denote X some Euclidean space
and by B(X) its Borel σ-field. A mapping f : X× Ξ→ R is
called a normal convex integrand if f is B(X)⊗X -measurable
and if f(. , s) is convex for all s ∈ Ξ [29].

A. Problem and General Algorithm

In this section, we consider the general problem

min
x∈X

L∑
i=1

E
[
fi(x, ξ

i) + gi(x, ξ
i)
]

(6)

where L is a positive integer, the ξi : Ω → Ξ are random
variables (r.v.), and the functions fi : X × Ξ → R and gi :
X× Ξ→ R satisfy the following assumption:

Assumption 1. The following holds for all i ∈ {1, . . . , L}:
1) The fi and gi are normal convex integrands.
2) For every x ∈ X, E[|fi(x, ξi)|] <∞ and E[|gi(x, ξi)|] <
∞.

3) For every s ∈ Ξ, fi(·, s) is differentiable. We denote as
∇fi(·, s) its gradient w.r.t. the first variable.

4

Remark. In this paper, we assume that the functions gi(·, ξ)
have a full domain for almost all ξ. This assumption can be
relaxed with some effort, along the ideas developed in [22].

For every i = 1, . . . , L and every γ > 0, we introduce the
mapping Tγ,i : X× Ξ→ X defined by

Tγ,i(x, s) = proxγgi(·,s)(x− γ∇fi(x, s)) .

We define Tγ : X× ΞL → X by

Tγ(·, (s1, . . . , sL)) = Tγ,L(·, sL) ◦ · · · ◦ Tγ,1(·, s1) .

Let ξ be the random vector ξ = (ξ1, . . . , ξL) with values in
ΞL and let (ξn : n ∈ N∗) be a sequence of i.i.d. copies of
ξ, defined on the same probability space (Ω,F ,P). For all
n ∈ N∗, ξn = (ξ1

n, . . . , ξ
L
n). Finally, let (γn) be a positive

sequence. Our aim is to analyze the convergence of the iterates
(xn) recursively defined by:

xn+1 = Tγn+1(xn, ξn+1) , (7)

as well as the intermediate variables x̄in+1 (i = 0, . . . , L)
defined by x̄0

n+1 = xn, and

x̄in+1 = Tγn+1,i(x̄
i−1
n+1, ξ

i
n+1) , i = 1, . . . , L . (8)

In particular, xn+1 = xLn+1 = Tγn+1,L(x̄L−1
n+1 , ξ

L
n+1).

In the special case where the functions gi, fi are all constant
with respect to s (the algorithm is deterministic), the above
iterations were studied by Passty in [30]. In the special case
where L = 1, the algorithm boils down to the stochastic
Forward-Backward algorithm, whose detailed convergence
analysis can be found in [22] (see also [31], and [32] as
an earlier work). In this case, the iterates take the simpler form

xn+1 = proxγn+1g1(·,ξn+1)(xn − γn+1∇f1(xn, ξn+1)) , (9)

and converge a.s. to a minimizer of E[f1(x, ξ)+g1(x,ξ)] under
the convenient hypotheses.

It is worth noting that the present algorithm (7) cannot be
written as an instance of (9). Indeed, the operator Tγ is a
composition of L (random) operators, whereas the stochastic
forward backward algorithm (9) has a simpler structure.
This composition raises technical difficulties that need to
be specifically addressed. Among these difficulties is the
dependency of the intermediate variables.

B. Almost sure convergence

We make the following assumptions.

Assumption 2. The positive sequence (γn) satisfies the
conditions ∑

γn = +∞ and
∑

γ2
n <∞ ,

(i.e., (γn) ∈ `2 \ `1). Moreover, γn+1

γn
→ 1

Assumption 3. The following holds for all i ∈ {1, . . . , L}:
1) There exists a measurable map Ki : Ξ → R+ s.t. the

following holds P-a.e.: for all x, y in X,

‖∇fi(x, ξi)−∇fi(y, ξi)‖ ≤ Ki(ξi)‖x− y‖ .

2) For all α > 0, E[Ki(ξi)
α] <∞.

We denote by Z the set of minimizers of Problem (6). Thanks
to Ass. 1, the qualification conditions hold, ensuring that a
point x? belongs to Z iff

0 ∈
L∑
i=1

∇E[fi(x?, ξ
i)] + ∂E[gi(x?, ξ

i)] .

The (sub)differential and the expectation operators can be
interchanged [33], and the above optimality condition also
reads

0 ∈
L∑
i=1

E[∇fi(x?, ξi)] + E[∂gi(x?, ξ
i)] , (10)

where E[∂gi(x?, ξ
i)] is the Aumann expectation of the random

set ∂gi(x?, ξi), defined as the set of expectations of the form
E[ϕi(ξ

i)], where ϕi : Ξ→ X is a measurable map s.t. ϕi(ξi)
is integrable and

ϕi(ξ
i) ∈ ∂gi(x?, ξi) P-a.e., ∀i. (11)

Therefore, the optimality condition (10) means that there exist
L integrable mappings ϕ1, . . . , ϕL satisfying (11) and s.t.

0 =

L∑
i=1

E[∇fi(x?, ξi)] + E[ϕi(ξ
i)] . (12)

When (11)-(12) hold, we say that the family
(∇fi(x?, ξi), ϕi(ξi))i=1,...,L is a representation of the
minimizer x?. In addition, if for some α ≥ 1 and every
i = 1, . . . , L, E[‖∇fi(x?, ξi)‖α] <∞ and E[‖ϕ(ξi)‖α] <∞,
we say that the minimizer x? admits a α-integrable
representation.

Assumption 4. 1) The set Z is not empty.
2) For every x? ∈ Z , there exists ε > 0

s.t. x? admits a (2 + ε)-integrable representation
(∇fi(x?, ξi), ϕi(ξi))i=1,...,L.

We denote by ∂g0
i (x, ξi) the least norm element in

∂gi(x, ξ
i).

Assumption 5. For every compact set K ⊂ X, there exists
η > 0 such that for all i = 1, . . . , L,

sup
x∈K

E[‖∂g0
i (x, ξi)‖1+η] <∞ .

We can now state the main result of this section, which will
be proven in Sec. VII.

Theorem 1. Let Ass. 1–5 hold true. There exists a r.v. X? s.t.
P(X? ∈ Z) = 1 and s.t. (xn) converges a.s. to X? as n→∞.
Moreover, for every i = 0, . . . , L− 1, x̄in converges a.s. to X?.

IV. THE SNAKE ALGORITHM

A. Notations

Let ` ≥ 1 be an integer. We refer to a walk of length ` over
the graph G as a sequence s = (v0, v1, . . . , v`) in V `+1 such
that for every i = 1, . . . , `, the pair {vi−1, vi} is an edge of
the graph. A walk of length zero is a single vertex.

5

We shall often identify s with the graph G(s) whose
vertices and edges are respectively given by the sets V(s) =
{v0, . . . , v`} and E(s) = {{v0, v1}, . . . , {v`−1, v`}}.

Let L ≥ 1. We denote by Ξ the set of all walks over G with
length ≤ L. This is a finite set. Let X be the set of all subsets
of Ξ. We consider the measurable space (Ξ,X).

Let s = (v0, v1, . . . , v`) ∈ Ξ with 0 < ` ≤ L. We abusively
denote by φs the family of functions (φ{vi−1,vi})i=1,...,`. We
refer to the φs−regularization of x as the φs−regularization
on the graph s of the restriction of x to s that is

R(x, φs) =
∑̀
i=1

φ{vi−1,vi}(x(vi−1), x(vi)) .

Besides, R(x, φs) is defined to be 0 if s is a single vertex (that
is ` = 0).

We say that a walk is a simple path if there is no repeated
node i.e, all elements in s are different or if s is a single vertex.
Throughout the paper, we assume that when s is a simple path,
the computation of proxR(.,φs) can be done easily.

B. Writing the Regularization Function as an Expectation

One key idea of this paper is to write the function R(x, φ)
as an expectation in order to use a stochastic approximation
algorithm, as described in Sec. III.

Denote by deg(v) the degree of the node v ∈ V , i.e., the
number of neighbors of v in G. Let π be the probability
measure on V defined as

π(v) =
deg(v)

2|E|
, v ∈ V .

Define the probability transition kernel P on V 2 as P (v, w) =
1{v,w}∈E/deg(v) if deg(v) > 0, and P (v, w) = 1v=w

otherwise, where 1 is the indicator function.
We refer to a Markov chain (indexed by N) over V with

initial distribution π and transition kernel P as an infinite
random walk over G. Let (vk)k∈N be an infinite random walk
over G defined on the canonical probability space (Ω,F ,P),
with Ω = V N. The first node v0 of this walk is randomly
chosen in V according to the distribution π. The other nodes
are drawn recursively according to the conditional probability
P(vk+1 = w | vk) = P (vk, w). In other words, conditionally to
vk, the node vk+1 is drawn uniformly from the neighborhood
of vk. Setting an integer L ≥ 1, we define the random variable
ξ from (vk)k∈N as ξ = (v0, v1, . . . , vL).

Proposition 2. For every x ∈ RV ,

1

|E|
R(x, φ) =

1

L
E[R(x, φξ)] . (13)

Proof. It is straightforward to show that π is an invariant
measure of the Markov chain (vk)k∈N. Moreover, P(vk =
w, vk−1 = v) = π(v)P (v, w) = 1{v,w}∈E/(2|E|), leading to
the identity

E
[
φ{vk−1,vk}(x(vk−1), x(vk))

]
=

1

|E|
R(x, φ) ,

which completes the proof by symmetry of φe,∀e ∈ E.

This proposition shows that Problem (1) is written equiva-
lently

min
x∈RV

1

|E|
F (x) + E[

1

L
R(x, φξ)]. (14)

Hence, applying the stochastic proximal gradient algorithm to
solve (14) leads to a new algorithm to solve (1), which was
mentioned in Sec. II, Eq. (5):

xn+1 = proxγn+1
1
LR(·,φξn+1

)(xn − γn+1
1

|E|
∇F (xn)) . (15)

Although the iteration complexity is reduced in (15) com-
pared to (2), the computation of the proximity operator of
the φ-regularization over the random subgraph ξn+1 in the
algorithm (15) can be difficult to implement. This is due to
the possible presence of loops in the random walk ξ. As an
alternative, we split ξ into several simple paths. We will then
replace the proximity operator over ξ by the series of the
proximity operators over the simple paths induced by ξ, which
are efficiently computable.

C. Splitting ξ into Simple Paths

Let (vk)k∈N be an infinite random walk on (Ω,F ,P). We
recursively define a sequence of stopping time (τi)i∈N as τ0 = 1
and for all i ≥ 0,

τi+1 = min{k ≥ τi : vk ∈ {vτi−1, . . . , vk−1}}

if the above set is nonempty, and τi+1 = +∞ otherwise.
We now define the stopping times ti for all i ∈ N as ti =
min(τi, L + 1). Finally, for all i ∈ N∗ we can consider the
random variable ξi on (Ω,F ,P) with values in (Ξ,X) defined
by

ξi = (vti−1−1, vti−1 , . . . , vti−1).

We denote by N the smallest integer n such that tn = L+ 1.
We denote by `(ξi) the length of the simple path ξi.

Example. Given a graph with vertices V = {a, b, c, . . . , z}
and a given edge set that is not useful to describe here, consider
ω ∈ Ω and the walk ξ(ω) = (c, a, e, g, a, f, a, b, h) with length
L = 8. Then, t0(ω) = 1, t1(ω) = 4, t2(ω) = 6, t3(ω) =
t4(ω) = . . . = 9, and ξ(ω) can be decomposed into N(ω) =
3 simple paths and we have ξ1(ω) = (c, a, e, g), ξ2(ω) =
(g, a, f), ξ3(ω) = (f, a, b, h) and ξ4(ω) = . . . = ξ8(ω) = (h).
Their respective lengths are `(ξ1(ω)) = 3, `(ξ2(ω)) = 2,
`(ξ3(ω)) = 3 and `(ξi(ω)) = 0 for all i = 4, . . . , 8. We
identify ξ(ω) with (ξ1(ω), . . . , ξ8(ω)).

It is worth noting that, by construction, ξi is a simple path.
Moreover, the following statements hold:
• We have 1 ≤ N ≤ L a.s.
• These three events are equivalent for all i: {ξi is a single

vertex}, {`(ξi) = 0} and {i ≥ N + 1}
• The last element of ξN is a.s. vL
•
∑L
i=1 `(ξ

i) = L a.s.
In the sequel, we identify the random vector (ξ1, . . . , ξL)

with the random variable ξ = (v0, . . . , vL). As a result, ξ is
seen as a r.v with values in ΞL.

Our notations are summarized in Table I. For every i =

6

TABLE I
USEFUL NOTATIONS

G = (V,E) Graph with no self-loop
s walk on G

(vi) infinite random walk
ξ = (ξ1, . . . , ξL) random walk of length L

ξi random simple path
`(ξi) length of ξi
R(x, φ) φ−regularization of x on G
R(x, φs) φ−regularization of x along the walk s

1, . . . , L, define the functions fi, gi on RV × Ξ in such a way
that

fi(x, ξ
i) =

`(ξi)

L|E|
F (x) (16)

gi(x, ξ
i) =

1

L
R(x, φξi) . (17)

Note that when i > N(ω) then fi(x, ξi(ω)) = gi(x, ξ
i(ω)) =

0.

Proposition 3. For every x ∈ RV , we have

1

|E|
(F (x) +R(x, φ)) =

L∑
i=1

E
[
fi(x, ξ

i) + gi(x, ξ
i)
]
. (18)

Proof. For every ω ∈ Ω and every x ∈ RV ,

1

L
R(x, φξ(ω)) =

1

L

N(ω)∑
i=1

R(x, φξi(ω)) =

L∑
i=1

gi(x, ξ
i(ω)) .

Integrating, and using Prop. 2, it follows that∑L
i=1 E[gi(x, ξ

i)] = 1
|E|R(x, φ). Moreover,∑L

i=1 fi(x, ξ
i(ω)) = 1

|E|F (x). This completes the proof.

D. Main Algorithm

Prop. 3 suggests that minimizers of Problem (1) can be
found by minimizing the right-hand side of (18). This can be
achieved by means of the stochastic approximation algorithm
provided in Sec. III. The corresponding iterations (7) read as
xn+1 = Tγn+1(xn, ξn+1) where (ξn) are iid copies of ξ. For
every i = 1, . . . , L− 1, the intermediate variable x̄in+1 given
by Eq. (8) satisfies

x̄in+1 = proxγngi(. ,ξin+1)(x̄
i−1
n − γn∇fi(x̄i−1

n , ξin+1)) .

Theorem 4. Let Ass. 2 hold true. Assume that the convex
function F is differentiable and that∇F is Lipschitz continuous.
Assume that Problem (1) admits a minimizer. Then, there exists
a r.v. X? s.t. X?(ω) is a minimizer of (1) for all ω P-a.e., and
s.t. the sequence (xn) defined above converges a.s. to X? as
n→∞. Moreover, for every i = 0, . . . , L− 1, x̄in converges
a.s. to X?.

Proof. It is sufficient to verify that the mappings fi, gi defined
by (16) and (17) respectively fulfill Ass. 1–5 of Th. 1. Then,
Th. 1 gives the conclusion. Ass. 1 and 3 are trivially satisfied.
It remains to show, for every minimizer x?, the existence of a
(2 + ε)-representation, for some ε > 0. Any such x? satisfies
Eq. (12) where ϕi satisfies (11). By definition of fi and gi,
it is straightforward to show that there exists a deterministic

TABLE II
PROPOSED SNAKE ALGORITHM.

procedure SNAKE(x0, L)
z ← x0
e←RND_ORIENTED_EDGE
n← 0
`← L
while stopping criterion is not met do

c, e← SIMPLE_PATH(e, `)

z ← PROX1D(z − γn LENGTH(c)
L|E| ∇F (z), c, 1

L
γn)

`← `− LENGTH(c)
if ` = 0 then

e← RND_ORIENTED_EDGE
`← L
n← n+ 1 . xnis z at this step

end if
end while
return z

end procedure

TABLE III
SIMPLE_PATH PROCEDURE.

procedure SIMPLE_PATH(e, `)
c← e
w ← UNIFORM_NEIB(e[−1])
while w /∈ c and LENGTH(c)< ` do

c← [c, w]
w ← UNIFORM_NEIB(w)

end while
return c, [c[−1], w]

end procedure

constant C? depending only on x? and the graph G, such that
‖∇fi(x?, ξi)‖ < C? and ‖ϕi(ξi)‖ < C?. This proves Ass. 4.
Ass. 5 can be easily checked by the same arguments.

Consider the general φ-regularized problem (1), and assume
that an efficient procedure to compute the proximity operator
of the φ-regularization over an 1D-graph is available. The
sequence (xn) is generated by the algorithm SNAKE (applied
with the latter 1D efficient procedure) and is summarized in
Table II. Recall the definition of the probability π on V and
the transition kernel P on V 2. The procedure presented in this
table calls the following subroutines.
• If c is a finite walk, c[−1] is the last element of c and

LENGTH(c) is its length as a walk that is |c| − 1.
• The procedure RND_ORIENTED_EDGE returns a tuple

of two nodes randomly chosen (v, w) where v ∼ π and
w ∼ P (v, .).

• For every x ∈ RV , every simple path s and every α > 0,
PROX1D(x, s, α) is any procedure that returns the quantity
proxαR(.,φs)(x) .

• The procedure UNIFORM_NEIB(v) returns a random
vertex drawn uniformly amongst the neighbors of the
vertex v that is with distribution P (v, .).

• The procedure SIMPLE_PATH(e, `), described in Table III,
generates the first steps of a random walk on G with
transition kernel P initialized at the vertex e[−1], and
prefaced by the first node in e. It represents the ξi’s of
the previous section. The random walk is stopped when
one node is repeated, or until the maximum number of
samples ` + 1 is reached. The procedure produces two

7

outputs, the walk and the oriented edge c, (c[−1], w). In
the case where the procedure stopped due to a repeated
node, c represents the simple path obtained by stopping
the walk before the first repetition occurs, while w is the
vertex which has been repeated (referred to as the pivot
node). In the case where no vertex is repeated, it means
that the procedure stopped because the maximum length
was achieved. In that case, c represents the last simple
path generated, and the algorithm doesn’t use the pivot
node w.

Remark. Although Snake converges for every value of the
hyperparameter L, a natural question is about the influence of
L on the behavior of the algorithm. In the case where R(· , φ)
is the TV regularization, [16] notes that, empirically, the taut-
string algorithm used to compute the proximity operator has a
complexity of order O(L). The same holds for the Laplacian
regularization. Hence, parameter L controls the complexity
of every iteration. On the other hand, in the reformulation
of Problem (1) into the stochastic form (13), the random
variable |E|R(x, φξ)/L is an unbiased estimate of R(x, φ).
By the ergodic theorem, the larger L, the more accurate is the
approximation. Hence, there is a trade-off between complexity
of an iteration and precision of the algorithm. This trade-
off is standard in the machine learning literature. It often
appears while sampling mini-batches in order to apply the
stochastic gradient algorithm to a deterministic optimization
problem(see [20], [21]). The choice of L is somehow similar
to the problem of the choice of the length of the mini-batches
in this context.

Providing a theoretical rule that would optimally select the
value of L is a difficult task that is beyond the scope of this
paper. Nevertheless, in Sec. VI, we provide a detailed analysis
of the influence of L on the numerical performance of the
algorithm.

V. PROXIMITY OPERATOR OVER 1D-GRAPHS

We now provide some special cases of φ-regularizations,
for which the computation of the proximity operator over
1D-graphs is easily tractable. Specifically, we address the
case of the total variation regularization and the Laplacian
regularization which are particular cases of φ-regularizations.

A. Total Variation norm

In the case where φ{i,j}(x, x
′) = w{i,j}|x − x′|, R(x, φ)

reduces to the weighted TV regularization

R(x, φ) =
∑
{i,j}∈E

w{i,j}|x(i)− x(j)|

and in the case where φ{i,j}(x, x′) = |x−x′|, R(x, φ) reduces
to the its unweighted version

R(x, φ) =
∑
{i,j}∈E

|x(i)− x(j)| .

As mentioned above, there exists a fast method, the taut
string algorithm, to compute the proximity operator of these
φ−regularizations over a 1D-graph ([13], [16]).

B. Laplacian regularization

In the case where φ{i,j}(x, x′) = w{i,j}(x− x′)2, R(x, φ)
reduces to the Laplacian regularization that is

R(x, φ) =
∑
{i,j}∈E

w{i,j}(x(i)− x(j))2.

Its unweighted version is∑
{i,j}∈E

(x(i)− x(j))2 = ‖∇x‖2 = x∗Lx.

In the case where φ{i,j}(x, x
′) = w{i,j}(x/

√
deg(i) −

x′/
√

deg(j))2,

R(x, φ) =
∑
{i,j}∈E

w{i,j}

(
x(i)√
deg(i)

− x′(i)√
deg(j)

)2

is the normalized Laplacian regularization.
We now explain one method to compute the proximity

operator of the unweighted Laplacian regularization over an
1D-graph. The computation of the proximity operator of the
normalized Laplacian regularization can be done similarly.
The computation of the proximity operator of the weighted
Laplacian regularization over an 1D-graph is as fast as
the computation the proximity operator of the unweighted
Laplacian regularization over an 1D-graph, using for example
Thomas’ algorithm.

The proximity operator of a fixed point y ∈ R`+1 is obtained
as a solution to a quadratic programming problem of the form:

min
x∈R`+1

1

2
‖x− y‖2 + λ

∑̀
k=1

(x(k − 1)− x(k))2 ,

where λ > 0 is a scaling parameter. Writing the first order
conditions, the solution x satisfies

(I + 2λL)x = y (19)

where L is the Laplacian matrix of the 1D-graph with `+ 1
nodes and I is the identity matrix in R`+1. By [17], L can be
diagonalized explicitely. In particular, I+ 2λL has eigenvalues

1 + 4λ

(
1− cos

(
πk

`+ 1

))
,

and eigenvectors ek ∈ R`+1

ek(j) =
1

2(`+ 1)
cos

(
π
kj

`+ 1
− π k

2(`+ 1)

)
,

for 0 ≤ k < n. Hence, x = C∗Λ−1Cy, where Λ gathers
the eigenvalues of I + 2λL and the operators C and C∗ are
the discrete cosine transform operator and the inverse discrete
cosine transform. The practical computation of x can be found
in O(` log(`)) operations.

VI. EXAMPLES

We now give some practical instances of Problem (1) by
particularizing F and the φ-regularization in (1). We also
provide some simulations to compare our method to existing
algorithms. The code is available at the address https://github.
com/adil-salim/Snake.

https://github.com/adil-salim/Snake
https://github.com/adil-salim/Snake

8

A. Trend Filtering on Graphs

Consider a vector y ∈ RV . The Graph Trend Filtering (GTF)
estimate on V with parameter k set to one is defined in [8]
by

ŷ = arg min
x∈RV

1

2
‖x− y‖2 + λ

∑
{i,j}∈E

|x(i)− x(j)|. (20)

where λ > 0 is a scaling parameter. In the GTF context, the
vector y represents a sample of noisy data over the graph
G and the GTF estimate represents a denoised version of y.
When G is an 1D or a 2D-graph, the GTF boils down to a well
known context [4], [7]. When G is a general graph, the GTF
estimate is studied in [8] and [10]. The estimate ŷ is obtained
as the solution of a TV-regularized risk minimization with
F (x) = 1

2‖x− y‖
2 where y is fixed. We address the problem

of computing the GTF estimate on two real life graphs from
[34] and one sampled graph. The first one is the Facebook
graph which is a network of 4039 nodes and 88234 edges
extracted from the Facebook social network. The second one
is the Orkut graph with 3072441 nodes and 117185083 edges.
Orkut was also an on-line social network. The third graph
is sampled according to a Stochastic Block Model (SBM).
Namely we generate a graph of 4000 nodes with four well-
separated clusters of 1000 nodes (also called “communities”) as
depicted in Fig. (2). Then we draw independently N2 Bernoulli
r.v. E(i, j), encoding the edges of the graph (an edge between
nodes i and j is present iff E(i, j) = 1), such that P{E(i, j) =
1} = P (ci, cj) where ci denotes the community of the node i
and where {

P (c, c′) = .1 if c = c′

P (c, c′) = .005 otherwise

This model is called the stochastic block model for the matrix
P [35]. It amounts to a blockwise Erdös-Rényi model with
parameters depending only on the blocks. It leads to 81117
edges.

We assume that every node is provided with an unknown
value in R (the set of all these values being referred to as the
signal in the sequel). In our example, the value y(i) at node i
is generated as y(i) = l(ci) + σεi where l is a mapping from
the communities to a set of levels (in Fig. 2, l(i) is an integer
in [0, 255]), and ε denotes a standard Gaussian white noise
with σ > 0 as its standard deviation. In Figure 2 we represent
an example of the signal y (left figure) along with the “initial”
values l(ci) represented in grayscale at every node.

Over the two real life graphs, the vector y is sampled
according to a standard Gaussian distribution of dimension
|V |. The parameter λ is set such that E[1

2‖x − y‖2] =
E[λ

∑
{i,j}∈E |x(i) − x(j)|] if x, y are two independent r.v

with standardized Gaussian distribution. The initial guess x0

is set equal to y. The step size γn set equal to |V |/(10n) for
the two real life graphs and |V |/(5n) for the SBM realization
graph. We ran the Snake algorithm for different values of L,
except over the Orkut graph where L = |V |.

The dual problem of (20) is quadratic with a box constraint.
The Snake algorithm is compared to the well-known projected
gradient (PG) algorithm for the dual problem. To solve the dual

Fig. 2. The signal is the grayscale of the node The graph is sampled according
to a SBM. Left: Noised signal over the nodes. Right: Sought signal.

problem of (20), we use L-BFGS-B [36] as suggested in [8].
Note that, while running on the Orkut graph, the algorithm
L-BFGS-B leads to a memory error from the solver [36] in
SciPy (using one thread of a 2800 MHz CPU and 256GB
RAM).

Figures 3, 4 and 5 show the objective function as a function
of time for each algorithm.

Fig. 3. Snake applied to the TV regularization over the Facebook Graph

Fig. 4. Snake applied to the TV regularization over the Orkut Graph

9

Fig. 5. Snake applied to the TV regularization over the SBM realization graph,
in log scale

In the case of the TV regularization, we observe that Snake
takes advantage of being an online method, which is known
to be twofold ([20], [21]). First, the iteration complexity is
controlled even over large general graphs: the complexity of the
computation of the proximity operator is empirically linear [16].
On the contrary, the projected gradient algorithm involves a
matrix-vector product with complexity O(|E|). Hence, e.g the
projected gradient algorithm has an iteration complexity of at
least O(|E|). The iteration complexity of Snake can be set to
be moderate in order to frequently get iterates while running
the algorithm. Then, Snake is faster than L-BFGS-B and the
projected gradient algorithms for the dual problem in the first
iterations of the algorithms.

Moreover, for the TV regularization, Snake seems to perform
globally better than L-BFGS-B and the projected gradient. This
is because Snake is a proximal method where the proximity
operator is efficiently computed ([37]).

The parameter L seems to have a minor influence on the
performance of the algorithm since, in Figure 3 the curves
corresponding to different values of L are closely superposed.
The log scale in Figure 5 allows us to see that the curve
corresponding Snake with L = 1000 performs slightly better
that the others. Figure 6 shows supplementary curves in log
scale where Snake is run over the Facebook graph with different
values of L.

In Figure 6, the best performing value is L = 500.
Over the three graphs, the value L = O(|V |) is a good value,

if not the best value to use the Snake algorithm. One can show
that, while sampling the first steps of the infinite random walk
over G from the node, say v, the expected time of return to
the random node v is |V |. Hence, the value L = |V | allow
Snake to significantly explore the graph during one iteration.

B. Graph Inpainting

The problem of graph inpainting has been studied in [1],
[2], [15] and can be expressed as follows. Consider a vector
y ∈ RV , a subset O ⊂ V . Let Ō be its complementary in V .

Fig. 6. Snake applied to the TV regularization over the Facebook graph, in
log scale

The harmonic energy minimization problem is defined in [2]
by

min
x∈RV

∑
{i,j}∈E

(x(i)− x(j))2

subject to x(i) = y(i),∀i ∈ O.

This problem is interpreted as follows. The signal y ∈ RV is
partially observed over the nodes and the aim is to recover y
over the non observed nodes. The subset O ⊂ V is the set of
the observed nodes and Ō the set of unobserved nodes. An
example is shown in Figure 7.

Fig. 7. Left: Partially observed data (unobserved nodes are black, data is
the color of nodes). Right: Fully observed data (the color is observed for all
nodes).

Denote by GŌ = (Ō, EŌ) the subgraph of G induced by
Ō. Namely, Ō is the set of vertices, and the set EŌ is formed
by the edges {i, j} ∈ E s.t. i ∈ Ō and j ∈ Ō. The harmonic
energy minimization is equivalent to the following Laplacian
regularized problem over the graph GŌ:

min
x∈RŌ

F (x) +
∑

{i,j}∈EŌ
i<j

(x(i)− x(j))2

(21)

where
F (x) =

∑
i∈Ō,j∈O
{i,j}∈E

(x(i)− y(j))2 .

10

The signal y is sampled according to a standardized Gaussian
distribution of dimension |V |. We compared the Snake algo-
rithm to existing algorithm over the Orkut graph. The set V is
divided in two parts of equal size to define O and Ō. The initial
guess is set equal to zero over the set of unobserved nodes Ō,
and to the restriction of y to O over the set of observed nodes
O. We compare our algorithm with the conjugate gradient

Figures 8 and 9 represent the objective function∑
{i,j}∈E(x(i) − x(j))2 as a function of time. Over the

Facebook graph, the parameter L is set equal to |V |/10.
The step size γn are set equal to |V |/(10n). Over the Orkut
graph, L is set equal to |V |/50. The step size are set equal
to |V |/(5

√
n) on the range displayed in Figure 8. Even if the

sequence (|V |/(5
√
n))n∈N does not satisfies the Ass. 2, it is

a standard trick in stochastic approximation to take a slowly
decreasing step size in the first iterations of the algorithm
([38]). It allows the iterates to be quickly close to the set
of solutions without converging to the set of solutions. Then,
one can continue the iterations using a step size satisfying
Ass. 2 to make the algorithm converging. There is a trade-off
between speed and precision while choosing the step-size.

Fig. 8. Snake applied to the Laplacian regularization over the Facebook Graph

Fig. 9. Snake applied to the Laplacian regularization over the Orkut Graph

Snake turns out to be faster in the first iterations. Moreover,
as an online method, it allows the user to control the iteration

complexity of the algorithm. Since a discrete cosine transform
is used, the complexity of the computation of the proximity
operator is O(L log(L)). In contrast, the iteration complexity
of the conjugate gradient algorithm can be a bottleneck (at
least O(|E|)) as far as very large graphs are concerned.

Besides, Snake for the Laplacian regularization does not
perform globally better than the conjugate gradient. This
is because the conjugate gradient is designed to fully take
advantage of the quadratic structure. On the contrary, Snake is
not specific to quadratic problems.

C. Online Laplacian solver

Let L the Laplacian of a graph G = (V,E). The resolution
of the equation Lx = b, where b is a zero mean vector,
has numerous applications ([18], [39]). It can be found by
minimizing the Laplacian regularized problem

min
x∈RV

−b∗x+
1

2
x∗Lx.

In our experiment, the vector b is sampled according to
a standardized Gaussian distribution of dimension |V |. We
compare our algorithm with the conjugate gradient over the
Orkut graph.

Fig. 10. Snake applied to the resolution of a Laplacian system over the Orkut
graph

Figure 10 represents the quantity ‖Lxn − b‖ as a function
of time, where xn is the iterate provided either by Snake or by
the conjugate gradient method. The parameter L is set equal to
|V |. The step size γn are set equal to |V |/(2n). Snake appears
to be more stable than the conjugate gradient method, has a
better performance at start up.

VII. PROOF OF TH. 1

We start with some notations. We endow the probability
space (Ω,F ,P) with the filtration (Fn) defined as Fn =
σ(ξ1, . . . , ξn), and we write En = E[· |Fn]. In particular,
E0 = E. We also define Gi(x) = E[gi(x, ξ

i)] and Fi(x) =
E[fi(x, ξ

i)] for every x ∈ X. We denote by µi and µ the
probability laws of ξi and ξ respectively. Finally, C and η will
refer to positive constants whose values can change from an

11

equation to another. The constant η can be chosen arbitrarily
small.

In [22], the case L = 1 is studied (algorithm (9)). Here
we shall reproduce the main steps of the approach of [22],
only treating in detail the specificities of the case L ≥ 1. We
also note that in [22], we considered the so-called maximal
monotone operators, which generalize the subdifferentials of
convex functions. This formalism is not needed here.

The principle of the proof is the following. Given a ∈ X,
consider the so called differential inclusion (DI) defined on
the set of absolutely continuous functions from R+ = [0,∞)
to X as follows:{

ż(t) ∈ −
∑L
i=1(∇Fi(z(t)) + ∂Gi(z(t)))

z(0) = a .
(22)

It is well known that this DI has a unique solution, i.e., a unique
absolutely continuous mapping z : R+ → X such that z(0) = a,
and ż(t) ∈ −

∑
(∇Fi(z(t)) + ∂Gi(z(t))) for almost all t > 0.

Consider now the map Φ : X×R+ → X, (a, t) 7→ z(t), where
z(t) is the DI solution with the initial value z(0) = a. Then,
Φ is a semi-flow [40], [41].

Let us introduce the following function I from XN to the
space of R+ → X continuous functions. For u = (un) ∈ XN,
the function u = I(u) is the continuous interpolated process
obtained from u as

u(t) = un +
un+1 − un
γn+1

(t− τn)

for t ∈ [τn, τn+1), where τn =
∑n

1 γk. Consider the
interpolated function x = I((xn)). We shall prove the two
following facts:
• The sequence (‖xn − x?‖) is almost surely convergent

for each x? ∈ Z (Prop. 6);
• The process x(t) is an almost sure Asymptotic Pseudo

Trajectory (APT) of the semi-flow Φ, a concept introduced
by Benaïm and Hirsch in the field of dynamical systems
[42]. Namely, for each T > 0,

sup
u∈[0,T]

‖x(t+ u)− Φ(x(t), u)‖ a.s.−−−→
t→∞

0, (23)

Taken together, these two results lead to the a.s. convergence
of (xn) to some r.v. X? supported by the set Z , as is shown by
[22, Cor. 3.2]. The convergence of the (x̄in)n stated by Th. 1
will be shown in the course of the proof.

Before entering the proof, we recall some well known facts
relative to the so called Moreau envelopes. For more details,
the reader is referred to e.g. [40, Ch. 2], or [37, Ch. 12]. The
Moreau envelope of parameter γ of a convex function h with
domain X is the function

hγ(x) = min
w∈X

h(w) + (2γ)−1‖w − x‖2 .

The function hγ is a differentiable function on X, and its
gradient is given by the equation

∇hγ(x) = γ−1(x− proxγh(x)) . (24)

This gradient is a γ−1-Lipschitz continuous function satisfying
the inequality ‖∇hγ(x)‖ ≤ ‖∂h0(x)‖, where ∂h0(x) is the

least-norm element of ∂h(x). Finally, for all (x, u) ∈ X× X
and for all v ∈ ∂h(u), the inequality

〈∇hγ(x)− v,proxγh(x)− u〉 ≥ 0 (25)

holds true. With the formalism of the Moreau envelopes, the
mapping Tγ,i can be rewritten as

Tγ,i(x, s) = x−γ∇fi(x, s)−γ∇gγi (x−γ∇fi(x, s), s) (26)

thanks to (24), where ∇gγi (·, s) is the gradient of the Moreau
envelope gγi (·, s). We shall adopt this form in the remainder
of the proof.

The following lemma is proven in Appendix A-A.

Lemma 5. For i = 1, . . . , L, let

x̄i = (Tγ,i(·, si) ◦ · · · ◦ Tγ,1(·, s1))(x).

Then, with Ass. 3, there exists a measurable map κ : ΞL →
R+ s.t. E[κ(ξ)α] < ∞ for all α ≥ 1 and s.t. for all s̄ =
(s1, . . . , sL) ∈ ΞL,

‖∇fi(x̄i−1, si)‖ ≤ κ(s̄)

i∑
k=1

‖∇fk(x, sk)‖+ ‖∇gγk (x, sk)‖

‖∇gγi (x̄i−1 − γ∇fi(x̄i−1, si), si)‖

≤ κ(s̄)

i∑
k=1

‖∇fk(x, sk)‖+ ‖∇gγk (x, sk)‖.

Recall that we are studying the iterations x̄in+1 =
Tγn+1,i(x̄

i−1
n+1, ξ

i
n+1), for i = 1, . . . , L, n ∈ N∗, with x̄0

n+1 =
xn and xn+1 = x̄Ln+1. In this section and in Appendix A, we
shall write for conciseness, for any x? ∈ Z ,

∇gγi = ∇gγn+1

i (x̄i−1
n+1 − γn+1∇fi(x̄i−1

n+1, ξ
i
n+1), ξin+1),

proxγgi = proxγgi(·,ξin+1)(x̄
i−1
n+1 − γn+1∇fi(x̄i−1

n+1, ξ
i
n+1)),

∇fi = ∇fi(x̄i−1
n+1, ξ

i
n+1),

∇f?i = ∇fi(x?, ξin+1) where x? ∈ Z,
ϕi = ϕi(ξ

i
n+1), (see Ass. 4) and

γ = γn+1.

The following proposition is analoguous to [31, Prop. 1] or to
[22, Prop. 6.1]:

Proposition 6. Let Ass. 2–4 hold true. Then the following facts
hold true:

1) For each x? ∈ Z , the sequence (‖xn − x?‖) converges
almost surely.

2) E
[∑L

i=1

∑∞
n=1 γ

2(‖∇gγi ‖2 + ‖∇fi‖2)
]
<∞.

3) For each i, x̄in+1 − xn → 0 almost surely.

This proposition is shown in Appendix A-B. It remains to
establish the almost sure APT to prove Th. 1. We just provide
here the main arguments of this part of the proof, since it is
similar to its analogue in [22].

Let us write

xn+1 = xn − γn+1

L∑
i=1

(
∇fi(x̄i−1

n+1, ξ
i
n+1)

+∇gγn+1

i (x̄i−1
n+1 − γn+1∇fi(x̄i−1

n+1, ξ
i
n+1), ξin+1)

)
,

12

and let us also define the function

Hγ(x, (s1, . . . , sL)) =

L∑
i=1

[
∇fi(x̄i−1, si)

+∇gγi (x̄i−1 − γ∇fi(x̄i−1, si), si)
]
,

where we recall the notation x̄i = (Tγ,i(·, si) ◦
· · · ◦ Tγ,1(·, s1))(x). By Lem. 5 and Ass. 3, 4 and 5,
E[‖Hγ(x, ξ)‖] <∞ and we define:

hγ(x) = E[Hγ(x, ξ)] .

Note that xn+1 = xn − γn+1Hγn+1
(xn, ξn+1). Defining the

(Fn) martingale

Mn =

n∑
k=1

xk − Ek−1[xk]

it is clear that xn+1 = xn − γn+1hγn+1
(xn) + (Mn+1 −Mn).

Let us rewrite this equation in a form involving the continuous
process x = I((xn)). Defining M = I((Mn)), and writing

r(t) = max{k ≥ 0 : τk ≤ t}, t ≥ 0,

we obtain

x(τn + t)− x(τn) = −
∫ t

0

hγr(τn+u)+1
(xr(τn+u)) du

+ M(τn + t)−M(τn) . (27)

The first argument of the proof of the almost sure APT is a
compactness argument on the sequence of continuous processes
(x(τn + ·))n). Specifically, we show that on a P-probability
one set, this sequence is equicontinuous and bounded. By
Ascoli’s theorem, this sequence admits accumulation points in
the topology of the uniform convergence on the compacts of
R+. As a second step, we show that these accumulation points
are solutions to the differential inclusion (22), which is in fact
a reformulation of the almost sure APT property (23).

Since

E
[
‖xn+1 − Enxn+1‖2

]
= γ2E

[∥∥∥ L∑
i=1

(∇fi − En∇fi) +

L∑
i=1

(∇gγi − En∇gγi)
∥∥∥2
]

≤ Cγ2E

[
L∑
i=1

(‖∇fi‖2 + ‖∇gγi ‖
2)

]
,

we obtain by Prop. 6–2) that supn E[‖Mn‖2] <∞. Thus, the
martingale Mn converges almost surely, which implies that
the sequence (M(τn + ·)−M(τn))n converges almost surely
to zero, uniformly on R+.

By Ass. 3 and 4, supx∈K
∫
‖∇fi(x, s)‖2µi(ds) < ∞ for

each compact K ⊂ X and each i. By Ass. 5, we also have

sup
x∈K

∫
‖∇gγi (x, s)‖1+εµi(ds) ≤ sup

x∈K

∫
‖∂g0

i (x, s)‖1+εµi(ds)

<∞ .

Thus by Lem. 5 and Hölder inequality, and using the fact that
the sequence (xn) is almost surely bounded by Prop. 6–1), it
can be shown that

sup
n
‖hγn+1(xn)‖ <∞ w.p. 1 ,

Inspecting (27), we thus obtain that the sequence (x(τn + ·))n
is equicontinuous and bounded with probability one.

In order to characterize its cluster points, choose T > 0,
and consider an elementary event on the probability one set
where x is equicontinuous and bounded on [0, T]. With a
small notational abuse, let (n) be a subsequence along which
(x(τn + ·))n converges on [0, T] to some continuous function
z(t). This function then is written as

z(t)−z(0)=− lim
n→∞

∫ t

0

du

∫
Ξ

µ(ds)Hγr(τn+u)+1
(xr(τn+u), s).

By the boundedness of (xn) (Prop. 6-1)), Lem. 5, and Ass. 3, 4
and 5, the sequence of functions (Hγr(τn+u)+1

(xr(τn+u), s))n
in the parameters (u, s) is bounded in the Banach space
L1+ε(du ⊗ µ), for some ε > 0, where du is the Lebesgue
measure on [0, T]. Since the unit ball of L1+ε(du ⊗ µ) is
weakly compact in this space by the Banach-Alaoglu theorem,
since this space is reflexive, we can extract a subsequence (still
denoted as (n)) such that Hγr(τn+u)+1

(xr(τn+u), s) converges
weakly in L1+ε(du ⊗ µ), as n → ∞, to a function Q(u, s).
The remainder of the proof consists in showing that Q can be
written as

Q(u, s) =

L∑
i=1

(
bi(u, s

i) + pi(u, s
i)
)
,

where bi(u, si) = ∇fi(z(u), si) and pi(u, s
i) ∈ ∂gi(z(u), si)

for du ⊗ µi-almost all (u, si). Indeed, once this result is
established, it becomes clear that z(t) is an absolutely continu-
ous function whose derivative satisfies almost everywhere the
inclusion ż(t) ∈ −

∑
i(∇Fi(z(t))+∂Gi(z(t))), noting that we

can exchange the integration and the differentiation (resp. the
subdifferentiation) in the expression of ∇F (resp. of ∂G).

We just provide here the main argument of this part of
the proof, since it is similar to its analogue in [22]. Let
i ∈ {1, . . . , L}. Let us focus on the sequence of functions
of (u, s) ∈ [0, T]× Ξ defined by

∇gγr(τn+u)+1

i (x̄i−1
r(τn+u)+1−γr(τn+u)+1∇fi(x̄i−1

r(τn+u)+1, s), s)

and indexed by n. This sequence is bounded in L1+ε(du⊗µi)
on a probability one set, as a function of (u, s), for the same rea-
sons as those explained above for (Hγr(τn+u)+1

(xr(τn+u), s))n.
We need to show that any weak limit point pi(u, s) of this
sequence satisfies pi(u, s) ∈ ∂gi(z(u), s) for du⊗µi-almost all
(u, s). Using the fact that x(τn+ ·)→ z(·) almost surely, along
with the inequality 〈∇gγi (x, s)− w,proxγgi(·,s)(x)− v〉 ≥ 0,
valid for all x, v ∈ X and w ∈ ∂gi(v, s), we show that
〈pi(u, s) − w, z(u) − v〉 ≥ 0 for du ⊗ µi-almost all (u, s).
Since v ∈ X and w ∈ ∂gi(v, s) are arbitrary, we get that
pi(u, s) ∈ ∂gi(z(u), s) by a well known property of the
subdifferentials of Γ0(X) functions.

VIII. CONCLUSION

A fast regularized optimization algorithm over large un-
structured graphs was introduced in this paper. This algorithm
is a variant of the proximal gradient algorithm that operates
on randomly chosen simple paths. It belongs to the family of
stochastic approximation algorithms with a decreasing step size.

13

One future research direction consists in a fine convergence
analysis of this algorithm, hopefully leading to a provably
optimal choice of the total walk length L. Another research
direction concerns the constant step analogue of the described
algorithm, whose transient behavior could be interesting in
many applicative contexts in the fields of statistics and learning.

APPENDIX A
PROOFS FOR SEC. VII

A. Proof of Lem. 5

We start by writing ‖∇fi(x̄i−1, si)‖ ≤ ‖∇fi(x̄i−2, si)‖ +
Ki(s

i)‖x̄i−1 − x̄i−2‖, where Ki(s
i) is provided by Ass. 3.

Using the identity x̄i−1 = Tγ,i−1(x̄i−2), where Tγ,i is given
by (26), and recalling that ∇gγi (·, si) is γ−1-Lipschitz, we get

‖∇fi(x̄i−1, si)‖ ≤ ‖∇fi(x̄i−2, si)‖
+γKi(s

i)(2‖∇fi−1(x̄i−2, si−1)‖+‖∇gγi−1(x̄i−2, si−1)‖).

Similarly,

‖∇gγi (x̄i−1 − γ∇fi(x̄i−1, si), si)‖
≤ ‖∇fi(x̄i−1, si)‖+ 2‖∇fi−1(x̄i−2, si−1)‖

+ ‖∇gγi (x̄i−2, si)‖+ ‖∇gγi−1(x̄i−2, si−1)‖.

Iterating down to x̄0 = x, we get the result since for every i,
the Ki(ξ

i) admit all their moments.

B. Proof of Prop. 6

Let x? be an arbitrary element of Z . Let i ∈ {1, . . . , L}.
We start by writing

‖x̄in+1 − x?‖2 = ‖x̄in+1 − x̄i−1
n+1‖2 + ‖x̄i−1

n+1 − x?‖2

+ 2〈x̄in+1 − x̄i−1
n+1, x̄

i−1
n+1 − x?〉

= ‖x̄i−1
n+1 − x?‖2 + γ2‖∇fi +∇gγi ‖

2

− 2γ〈∇fi −∇f?i , x̄i−1
n+1 − x?〉

− 2γ〈∇gγi − ϕi, x̄
i−1
n+1 − x?〉

− 2γ〈∇f?i + ϕi, x̄
i−1
n+1 − x?〉

= ‖x̄i−1
n+1 − x?‖2 +A1 +A2 +A3 +A4.

Most of the proof consists in bounding the Ai’s. We shall
repeatedly use Young’s inequality |〈a, b〉| ≤ η‖a‖2 + C‖b‖2,
where η > 0 is a constant chosen as small as desired, and
C > 0 is fixed accordingly. Starting with A1, we have

A1 ≤ γ2(1 + η)‖∇gγi ‖
2 + Cγ2‖∇fi‖2.

We have A2 ≤ 0 by the convexity of fL. We can write

A3 = −2γ〈∇gγi − ϕi,proxγgi −x?〉
− 2γ〈∇gγi − ϕi, x̄

i−1
n+1 − γ∇fi − proxγgi〉

− 2γ〈∇gγi − ϕi, γ∇fi〉

By (25), the first term at the right hand side is ≤ 0. By (24),
x̄i−1
n+1 − γ∇fi − proxγgi = γ∇gγi . Thus,

A3 ≤ −2γ2‖∇gγi ‖
2 + 2γ2〈ϕi,∇gγi +∇fi〉 − 2γ2〈∇gγi ,∇fi〉

≤ −(2− η)γ2‖∇gγi ‖
2 + Cγ2‖∇fi‖2 + Cγ2‖ϕi‖2

As regards A4, we have

A4 = −2γ〈∇f?i + ϕi, xn − x?〉
− 2γ〈∇f?i + ϕi, x̄

i−1
n+1 − xn〉.

Gathering these inequalities, we get

‖x̄in+1 − x?‖2 ≤ ‖x̄i−1
n+1 − x?‖2 − (1− η)γ2‖∇gγi ‖

2

+ Cγ2‖∇fi‖2 + Cγ2‖ϕi‖2

− 2γ〈∇f?i + ϕi, xn − x?〉
− 2γ〈∇f?i + ϕi, x̄

i−1
n+1 − xn〉

Iterating over i, we get

‖x̄in+1 − x?‖2 ≤ ‖xn − x?‖2 − (1− η)γ2
i∑

k=1

‖∇gγk‖
2

+ Cγ2
i∑

k=1

‖∇fk‖2 + Cγ2
i∑

k=1

‖ϕk‖2

− 2γ

i∑
k=1

〈∇f?k + ϕk, xn − x?〉

− 2γ

i∑
k=1

〈∇f?k + ϕk, x̄
k−1
n+1 − xn〉.

The summand in the last term can be written as

− 2γ〈∇f?k + ϕk, x̄
k−1
n+1 − xn〉

=− 2γ

k−1∑
`=1

〈∇f?k + ϕk, x̄
`
n+1 − x̄`−1

n+1〉

=− 2γ2
k−1∑
`=1

〈∇f?k + ϕk,∇f` +∇gγ` 〉

≤ γ2C‖∇f?k‖2 + γ2C‖ϕk‖2

+ γ2C
k−1∑
`=1

‖∇f`‖2 + γ2η

k−1∑
`=1

‖∇gγ` ‖
2.

where we used |〈a, b〉| ≤ η‖a‖2 + C‖b‖2 as above. Therefore,
for all i = 1, . . . , L,

‖x̄in+1 − x?‖2 ≤ ‖xn − x?‖2 − (1− η)γ2
i∑

k=1

‖∇gγk‖
2

+ Cγ2
i∑

k=1

‖∇f?k‖2 + Cγ2
i∑

k=1

‖ϕk‖2

+ Cγ2
i∑

k=1

‖∇fk‖2

− 2γ〈
i∑

k=1

∇f?k + ϕk, xn − x?〉. (28)

14

We consider the case i = L. Using Ass. 4,

En
[
‖x̄Ln+1 − x?‖2

]
≤ ‖xn − x?‖2

− (1− η)γ2En

[
L∑
k=1

‖∇gγk‖
2

]

+ Cγ2 + Cγ2
L∑
k=1

En[‖∇fk‖2]

− 2γEn

[
〈
L∑
k=1

∇f?k + ϕk, xn − x?〉

]
.

The last term at the right hand side is zero since

En

[
〈
L∑
k=1

∇f?k + ϕk, xn − x?〉

]

=〈E

[
L∑
k=1

∇f?k + ϕk

]
, xn − x?〉 = 0

by definition of ∇f?k and ϕk. Besides, using Ass. 3, for all k
we have

En[‖∇fk‖2] ≤ CEn[‖∇f?k‖2]+CEn[K2
k(ξkn+1)‖x̄k−1

n+1−x?‖2].

Then,

En[‖xn+1 − x?‖2] ≤ ‖xn − x?‖2 + Cγ2

− (1− η)γ2En

[
L∑
k=1

‖∇gγk‖
2

]

+ Cγ2
L∑
k=1

En
[
K2
k(ξkn+1)‖x̄k−1

n+1 − x?‖2
]

(29)

We shall prove by induction that for all r.v Pk which is
a monomial expression of the r.v K2

k(ξkn+1), . . . ,K2
L(ξLn+1),

there exists C > 0 such that

En
[
Pk‖x̄k−1

n+1 − x?‖2
]
≤ C(1 + ‖xn − x?‖2), (30)

for all k = 1, . . . , L. Note that such a r.v Pk is independent
of Fn, non-negative and for all α > 0, E[Pαk] <∞ by Ass. 3.
Using Ass. 3, the induction hypothesis 30 is satisfied if k = 1.
Assume that it holds true until the step k − 1 for some k ≤ L.
Using 28 and Ass. 3,

En
[
Pk‖x̄k−1

n+1 − x?‖2
]
≤ C‖xn − x?‖2

+ Cγ2En

[
Pk

k−1∑
`=1

‖∇f`‖2
]

+ Cγ2En

[
Pk

k−1∑
`=1

‖ϕ`‖2 + ‖∇f?` ‖2
]

− 2γEnPk〈
k−1∑
`=1

∇f?` + ϕ`, xn − x?〉.

(31)

The last term at the right hand side can be bounded as

− 2γEnPk〈
k−1∑
`=1

∇f?` + ϕ`, xn − x?〉

≤C‖xn − x?‖2 + CEn

[
Pk

k−1∑
`=1

‖∇f?` ‖2 + ‖ϕ`‖2
]

≤C‖xn − x?‖2 + C (32)

using Hölder inequality and Ass. 4. For all ` = 1, . . . , k − 1,

En[Pk‖∇f`‖2] ≤ CEn[Pk‖∇f?` ‖2]

+ CEn
[
PkK

2
` (ξ`n+1)‖x̄`−1

n+1 − x?‖2
]

≤ C(1 + ‖xn − x?‖2) (33)

where we used Hölder inequality and Ass. 4 for the first term
at the right hand side and the induction hypothesis (30) at the
step ` with the r.v P` := PkK

2
` (ξ`n+1) for the second term.

Plugging (32) and (33) into (31) and using again Hölder
inequality and Ass. 4 we find that (30) holds true at the step
k. Hence (30) holds true for all k = 1, . . . , L. Finally, plug-
ging (30) into (29) with Pk = K2

k(ξkn+1) for all k = 1, . . . , L
we get

En[‖xn+1 − x?‖2] ≤ (1 + Cγ2)‖xn − x?‖2 + Cγ2

− (1− η)γ2En

[
L∑
k=1

‖∇gγk‖
2

]
.

By the Robbins-Siegmund lemma [43], used along with (γn) ∈
`2, we get that (‖xn − x?‖) converges almost surely, showing
the first point.

By taking the expectations at both sides of this in-
equality, we also obtain that (E‖xn − x?‖2) converges,
supn E‖xn−x?‖2 <∞, and E

∑
n γ

2
n+1

∑L
i=1 ‖∇g

γ
i ‖2 <∞.

As supn E‖xn − x?‖2 < ∞, we have by Ass. 3 that
supn E‖∇f1‖2 < ∞. Using Lem. 5 and iterating, we easily
get that E

∑
n γ

2
n+1

∑L
i=1 ‖∇fi‖2 <∞ for all i.

Since ‖x̄1
n+1 − xn‖ ≤ γ‖∇f1‖ + γ‖∇gγ1 ‖, we get that∑

n E‖x̄1
n+1 − xn‖2 <∞. By Borel-Cantelli’s lemma, we get

that x̄1
n+1−xn → 0 almost surely. The almost sure convergence

of x̄in+1−xn to zero is shown similarly, and the proof of Prop. 6
is concluded.

REFERENCES

[1] A. El Alaoui, X. Cheng, A. Ramdas, M. J. Wainwright, and M. I.
Jordan, “Asymptotic behavior of `p-based Laplacian regularization in
semi-supervised learning,” in COLT, 2016, pp. 879–906.

[2] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using
gaussian fields and harmonic functions,” in ICML, 2003, pp. 912–919.

[3] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and
optimization in large graphs,” in SIGKDD, 2015, pp. 387–396.

[4] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, “An
introduction to total variation for image analysis,” Theoretical foundations
and numerical methods for sparse recovery, vol. 9, pp. 263–340, 2010.

[5] W. Hinterberger, M. Hintermüller, K. Kunisch, M. Von Oehsen, and
O. Scherzer, “Tube methods for bv regularization,” Journal of Mathe-
matical Imaging and Vision, vol. 19, no. 3, pp. 219–235, 2003.

[6] Z. Harchaoui and C. Lévy-Leduc, “Multiple change-point estimation with
a total variation penalty,” Journal of the American Statistical Association,
2012.

[7] R. J. Tibshirani, “Adaptive piecewise polynomial estimation via trend
filtering,” The Annals of Statistics, vol. 42, no. 1, pp. 285–323, 2014.

15

[8] Y.-X. Wang, J. Sharpnack, A. Smola, and R. J. Tibshirani, “Trend filtering
on graphs,” Journal of Machine Learning Research, vol. 17, no. 105, pp.
1–41, 2016.

[9] O. H. M. Padilla, J. G. Scott, J. Sharpnack, and R. J. Tibshirani, “The
dfs fused lasso: nearly optimal linear-time denoising over graphs and
trees,” arXiv preprint arXiv:1608.03384, 2016.

[10] J.-C. Hütter and P. Rigollet, “Optimal rates for total variation denoising,”
arXiv preprint arXiv:1603.09388, 2016.

[11] L. Landrieu and G. Obozinski, “Cut pursuit: Fast algorithms to learn
piecewise constant functions,” in AISTATS, 2016, pp. 1384–1393.

[12] W. Tansey and J. G. Scott, “A fast and flexible algorithm for the graph-
fused lasso,” arXiv preprint arXiv:1505.06475, 2015.

[13] A. Barbero and S. Sra, “Modular proximal optimization for multidimen-
sional total-variation regularization,” arXiv preprint arXiv:1411.0589,
2014.

[14] W. Ben-Ameur, P. Bianchi, and J. Jakubowicz, “Robust distributed
consensus using total variation,” IEEE Transactions on Automatic Control,
vol. 61, no. 6, pp. 1550–1564, 2016.

[15] S. Chen, A. Sandryhaila, G. Lederman, Z. Wang, J. M. Moura, P. Rizzo,
J. Bielak, J. H. Garrett, and J. Kovačević, “Signal inpainting on graphs
via total variation minimization,” in ICASSP, 2014, pp. 8267–8271.

[16] L. Condat, “A direct algorithm for 1d total variation denoising,” IEEE
SPL, vol. 20, no. 11, pp. 1054–1057, 2013.

[17] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997,
vol. 92.

[18] D. A. Spielman, “Algorithms, graph theory, and linear equations in
laplacian matrices,” in Proceedings of the ICM, vol. 4, 2010, pp. 2698–
2722.

[19] A. Salim, P. Bianchi, W. Hachem, and J. Jakubowicz, “A stochastic
proximal point algorithm for total variation regularization over large
scale graphs,” IEEE CDC, 2016.

[20] L. Bottou, “Large-scale machine learning with stochastic gradient descent,”
in COMPSTAT’2010, 2010, pp. 177–186.

[21] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” arXiv preprint arXiv:1606.04838, 2016.

[22] P. Bianchi and W. Hachem, “Dynamical behavior of a stochastic forward–
backward algorithm using random monotone operators,” Journal of
Optimization Theory and Applications, vol. 171, no. 1, pp. 90–120,
2016.

[23] N. A. Johnson, “A dynamic programming algorithm for the fused lasso
and l 0-segmentation,” Journal of Computational and Graphical Statistics,
vol. 22, no. 2, pp. 246–260, 2013.

[24] E. Mammen and S. van de Geer, “Locally adaptive regression splines,”
The Annals of Statistics, vol. 25, no. 1, pp. 387–413, 1997.

[25] P. L. Davies and A. Kovac, “Local extremes, runs, strings and multireso-
lution,” The Annals of Statistics, pp. 1–48, 2001.

[26] P. L. Combettes, “Iterative construction of the resolvent of a sum of
maximal monotone operators,” Journal of Convex Analysis, vol. 16, no. 4,
pp. 727–748, 2009.

[27] S. Jegelka, F. Bach, and S. Sra, “Reflection methods for user-friendly
submodular optimization,” in Advances in NIPS, 2013, pp. 1313–1321.

[28] D. A. Spielman and S.-H. Teng, “Nearly linear time algorithms for
preconditioning and solving symmetric, diagonally dominant linear
systems,” SIAM Journal on Matrix Analysis and Applications, vol. 35,
no. 3, pp. 835–885, 2014.

[29] R. T. Rockafellar, “Measurable dependence of convex sets and functions
on parameters,” Journal of Mathematical Analysis and Applications,
vol. 28, no. 1, pp. 4–25, 1969.

[30] G. B. Passty, “Ergodic convergence to a zero of the sum of monotone
operators in hilbert space,” Journal of Mathematical Analysis and
Applications, vol. 72, no. 2, pp. 383–390, 1979.

[31] P. Bianchi, “Ergodic convergence of a stochastic proximal point algo-
rithm,” SIAM Journal on Optimization, vol. 26, no. 4, pp. 2235–2260,
2016.

[32] M. Wang and D. P. Bertsekas, “Incremental constraint projection methods
for variational inequalities,” Mathematical Programming, vol. 150, no. 2,
pp. 321–363, 2015.

[33] R. T. Rockafellar and R. J. Wets, “On the interchange of subdifferentiation
and conditional expectation for convex functionals,” Stochastics: An
International Journal of Probability and Stochastic Processes, vol. 7,
no. 3, pp. 173–182, 1982.

[34] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[35] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983.

[36] R. H. Byrd, P. Lu, J. Nocedal, and C. Y. Zhu, “A limited memory
algorithm for bound constrained optimization,” SIAM Journal on Scientific
Computing, vol. 16, no. 5, pp. 1190–1208, 1995.

[37] H. H. Bauschke and P. L. Combettes, Convex analysis and
monotone operator theory in Hilbert spaces, ser. CMS Books
in Mathematics/Ouvrages de Mathématiques de la SMC. New
York: Springer, 2011. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4419-9467-7

[38] E. Moulines and F. R. Bach, “Non-asymptotic analysis of stochastic
approximation algorithms for machine learning,” in Advances in NIPS,
2011, pp. 451–459.

[39] N. K. Vishnoi, “Laplacian solvers and their algorithmic applications,”
Theoretical Computer Science, vol. 8, no. 1-2, pp. 1–141, 2012.

[40] H. Brézis, Opérateurs maximaux monotones et semi-groupes de
contractions dans les espaces de Hilbert, ser. North-Holland
mathematics studies. Burlington, MA: Elsevier Science, 1973. [Online].
Available: http://cds.cern.ch/record/1663074

[41] J.-P. Aubin and A. Cellina, Differential inclusions, ser. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1984, vol. 264,
set-valued maps and viability theory. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-69512-4

[42] M. Benaïm and M. W. Hirsch, “Asymptotic pseudotrajectories and chain
recurrent flows, with applications,” Journal of Dynamics and Differential
Equations, vol. 8, no. 1, pp. 141–176, 1996.

[43] H. Robbins and D. Siegmund, “A convergence theorem for non negative
almost supermartingales and some applications,” in Optimizing Methods
in Statistics. Academic Press, New York, 1971, pp. 233–257.

Adil Salim was born in 1991 in L’Hay-les-Roses,
France. He received the M.Sc. degree of the Univer-
sity of Paris XI and the ENSAE ParisTech in 2015.
Then he joined Telecom ParisTech as a Ph.D. student
in the Signal, Statistics, Learning group. His research
interests are focused on optimization algorithms for
machine learning.

Pascal Bianchi was born in 1977 in Nancy, France.
He received the M.Sc. degree of the University of
Paris XI and Supélec in 2000 and the Ph.D. degree
of the University of Marne-la-Vallée in 2003. From
2003 to 2009, he was with the Telecommunication
Department of Centrale-Supélec. He is now working
as a full Professor in the Signal, Statistics, Learning
group at Telecom ParisTech. His current research
interests are in the area of numerical optimization,
stochastic approximations, signal processing and
distributed systems.

Walid Hachem was born in Bhamdoun, Lebanon, in
1967. He received the Engineering degree in telecom-
munications from St Joseph University (ESIB),
Beirut, Lebanon, in 1989, the Masters degree from
Telecom ParisTech, France, in 1990, the PhD degree
in signal processing from the Université Paris-Est
Marne-la-Vallée in 2000 and the Habilitation à diriger
des recherches from the Université Paris-Sud in 2006.
Between 1990 and 2000 he worked in the telecommu-
nications industry as a signal processing engineer. In
2001 he joined the academia as a faculty member at

Supélec, France. In 2006, he joined the CNRS (Centre national de la Recherche
Scientifique), where he is now a research director based at the Université
Paris-Est. His research themes consist mainly in the large random matrix theory
and its applications in statistical estimation and in communication theory, and
in the optimization algorithms in random environments.
He served as an associate editor for the IEEE Transactions on Signal Processing
between 2007 and 2010.

http://snap.stanford.edu/data
http://dx.doi.org/10.1007/978-1-4419-9467-7
http://dx.doi.org/10.1007/978-1-4419-9467-7
http://cds.cern.ch/record/1663074
http://dx.doi.org/10.1007/978-3-642-69512-4
http://dx.doi.org/10.1007/978-3-642-69512-4

	Introduction
	Outline of the approach and paper organization
	A General Stochastic Proximal Gradient Algorithm
	Problem and General Algorithm
	Almost sure convergence

	The Snake Algorithm
	Notations
	Writing the Regularization Function as an Expectation
	Splitting into Simple Paths
	Main Algorithm

	Proximity operator over 1D-graphs
	Total Variation norm
	Laplacian regularization

	Examples
	Trend Filtering on Graphs
	Graph Inpainting
	Online Laplacian solver

	Proof of Th. 1
	Conclusion
	Appendix A: Proofs for Sec. VII
	Proof of Lem. 5
	Proof of Prop. 6

	References
	Biographies
	Adil Salim
	Pascal Bianchi
	Walid Hachem

