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Many applications in the fields of multiagent systems, distributed optimization, machine learning on
graphs [[1]], graph theory [2] or multi-task learning, require the solution of the following optimization
problem. On an undirected graph G = (V(G), E(G)), where V(G) = {1,..., N} represents a set
of N nodes and E(G) is the set of edges, find
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where X is an Euclidean space, f; is a convex differentiable function for all ¢ € V(G), and ¢, is a
convex symmetric function for all e € E(G).

Define the data fitting term F'(z) = > ,cy/(q) fi(z(i)) and the regularization term R(z,G) =
> tigren(c) i (@), 2(j)). When R(-, G) is the (weighted) Total Variation (TV) norm, R(-, G) =

> (ijyen(c) [x(@) —z(4)|, instances of (I) include the Graph Trend Filtering (GTF) context of [1]. In

this context, F'is set to F'(z) = §|lz — y||* where y is a fixed vector. When R(-, G) is the (weighted

and/or normalized) Laplacian regularization, for example R(-,G) = > y; hep(q) |2(i) — x(5)%
instances of Problem (T)) include the resolution of linear equations in Laplacian matrix or the resolution
of semi-supervised learning problems over graphs [2]].

The proximal gradient algorithm is one of the most popular approaches towards solving the regularized
Problem (T)). This algorithm produces the sequence of iterates

Tpt1 = Prox, .oy (@n —YVF(z0)), ()

where v > 0 is a fixed step, and where prox, p(. )(y) = argmin, (R(z, G)+ %Hx — y||2> is
the well-known proximity operator. Implementing the proximal gradient algorithm requires the
computation of prox, p(. o). When N is large, the computation of the proximity operator is in
general not affordable due to the non separability of the regularization term. However, when G is
one-dimensional (1D) (see Figure left) and R(-, G) is the TV norm, the taut-string algorithm is an
efficient procedure to compute the proximity operator over an 1D-graph [3]. Similar observations
can be made for the Laplacian regularization, where, e.g., the discrete cosine transform can be
implemented over an 1D-graph. Over large and general graphs, the computation of prox, g. ¢) is
more difficult ([1, 2]]).

In this work, an online method called Snake is proposed to solve (I)) over a general graph G. It consists
in properly selecting random simple paths (i.e 1D-subgraphs of (7) in the graph and performing the
proximal gradient algorithm over these simple paths (see Figure [T} right).

Consider a stationary simple random walk ¢ is over G with length L + 1. The walk £ induced a
subgraph & = (V/(£), E(€)) of G (Figure[l). It is proven in [4] that, for every L > 2, Problem (T) is
equivalent to
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Figure 1: Left: 1D graph. Right: General graph on which is colored the simple path 3-1-0-6-7.

It is then shown, based on recent advances in the study of stochastic proximal algorithm that the
Snake algorithm (4)

Tn 1 ,
Tl = POXppgon) | 0 T T > mvfi(xn(l)) )
i€V (§nt1)

converges to a solution of Problem (I). In this algorithm, (-y,,) is a decreasing step size and the &,
are copies of random walks stopped when a node is repeated. The Snake algorithm only involves
computations of the proximity operators over 1D graphs which can be done efficiently, and only need
a local knowledge of the graph topology. Moreover, the parameter L controls the iteration complexity.

Finally, applications of Snake in the GTF context and for solving linear equations in Laplacian matrix
over the Facebook and Orkut graphs ([5]) are provided in Figure 2]
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Figure 2: Left: GTF estimation over the Facebook graph. Right: Solving Lz = b, where L is the
Laplacian matrix of the Orkut graph.

As stochastic gradient algorithm has been implemented to handle large scale data fitting terms, Snake
uses a stochastic proximal method to regularize the graph online. This work leaves the door open to
the use of stochastic proximal methods to handle large scale regularizations.
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