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Many applications in the fields of multiagent systems, distributed optimization, machine learning on
graphs [1], graph theory [2] or multi-task learning, require the solution of the following optimization
problem. On an undirected graph G = (V (G), E(G)), where V (G) = {1, . . . , N} represents a set
of N nodes and E(G) is the set of edges, find

min
x∈XV (G)

∑
i∈V (G)

fi(x(i)) +
∑

{i,j}∈E(G)

φi,j(x(i), x(j)), (1)

where X is an Euclidean space, fi is a convex differentiable function for all i ∈ V (G), and φe is a
convex symmetric function for all e ∈ E(G).

Define the data fitting term F (x) =
∑
i∈V (G) fi(x(i)) and the regularization term R(x,G) =∑

{i,j}∈E(G) φi,j(x(i), x(j)). When R(·, G) is the (weighted) Total Variation (TV) norm, R(·, G) =∑
{i,j}∈E(G) |x(i)−x(j)|, instances of (1) include the Graph Trend Filtering (GTF) context of [1]. In

this context, F is set to F (x) = 1
2‖x− y‖

2 where y is a fixed vector. When R(·, G) is the (weighted
and/or normalized) Laplacian regularization, for example R(·, G) =

∑
{i,j}∈E(G) |x(i) − x(j)|2,

instances of Problem (1) include the resolution of linear equations in Laplacian matrix or the resolution
of semi-supervised learning problems over graphs [2].

The proximal gradient algorithm is one of the most popular approaches towards solving the regularized
Problem (1). This algorithm produces the sequence of iterates

xn+1 = proxγR(·,G)(xn − γ∇F (xn)) , (2)

where γ > 0 is a fixed step, and where proxγR(·,G)(y) = argminx

(
R(x,G) + 1

2γ ‖x− y‖
2
)

is
the well-known proximity operator. Implementing the proximal gradient algorithm requires the
computation of proxγR(·,G). When N is large, the computation of the proximity operator is in
general not affordable due to the non separability of the regularization term. However, when G is
one-dimensional (1D) (see Figure 1, left) and R(·, G) is the TV norm, the taut-string algorithm is an
efficient procedure to compute the proximity operator over an 1D-graph [3]. Similar observations
can be made for the Laplacian regularization, where, e.g., the discrete cosine transform can be
implemented over an 1D-graph. Over large and general graphs, the computation of proxγR(·,G) is
more difficult ([1, 2]).

In this work, an online method called Snake is proposed to solve (1) over a general graphG. It consists
in properly selecting random simple paths (i.e 1D-subgraphs of G) in the graph and performing the
proximal gradient algorithm over these simple paths (see Figure 1, right).

Consider a stationary simple random walk ξ is over G with length L + 1. The walk ξ induced a
subgraph ξ = (V (ξ), E(ξ)) of G (Figure 1). It is proven in [4] that, for every L ≥ 2, Problem (1) is
equivalent to

min
x∈XV (G)

Eξ

 1

L+ 1

∑
i∈V (ξ)

1

deg(i)
fi(x(i))

+ Eξ
(
1

L
R(x, ξ)

)
. (3)
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Figure 1: Left: 1D graph. Right: General graph on which is colored the simple path 3-1-0-6-7.

It is then shown, based on recent advances in the study of stochastic proximal algorithm that the
Snake algorithm (4)

xn+1 = prox γn
L R(·,ξn+1)

xn − γn
L+ 1

∑
i∈V (ξn+1)

1

deg(i)
∇fi(xn(i))

 (4)

converges to a solution of Problem (1). In this algorithm, (γn) is a decreasing step size and the ξn
are copies of random walks stopped when a node is repeated. The Snake algorithm only involves
computations of the proximity operators over 1D graphs which can be done efficiently, and only need
a local knowledge of the graph topology. Moreover, the parameter L controls the iteration complexity.

Finally, applications of Snake in the GTF context and for solving linear equations in Laplacian matrix
over the Facebook and Orkut graphs ([5]) are provided in Figure 2.

Figure 2: Left: GTF estimation over the Facebook graph. Right: Solving Lx = b, where L is the
Laplacian matrix of the Orkut graph.

As stochastic gradient algorithm has been implemented to handle large scale data fitting terms, Snake
uses a stochastic proximal method to regularize the graph online. This work leaves the door open to
the use of stochastic proximal methods to handle large scale regularizations.
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