
Adil SALIM Ensae 2e Année

Méthodes séquentielles de
traitement de données

University College Dublin Florian Maire
The Insight Centre for Data Analytics 23 Juin 2014 - 31 Août 2014

1

Chapter 1

Note de synthèse

In this work I was interested in data analysis. I first studied how the perfor-
mance of an algorithm of data analysis could be improved by ranking the data
before processing. Data are values in Rd. In a bayesian framework, the data are
assumed to be random variables with a distribution parametrized by a random
vector. The aim of the algorithm I studied is to infer the posterior distribution
of this parameter given the data. The number of observations is assumed to be
massive and therefore the algorithm is required to process a small number of
data at each iteration.

I tried different way to rank the data. When the observations are one dimen-
sional, I first measured the performance of the algorithm without ranking them
i.e drawing them uniformly without replacement. Then, I ranked them by score
of ”likelihood”, using a frequentist approach. An observation is attached to a
high likelihood if there is a large number of observations close to it. This un-
dermeans that the observation is in a high density region. I processed the data
by increasing order with this criterion. Finally I divided the sample of data by
quantiles. I made batchs with one observation in each quantile and process the
data. When the observations are two dimensional, I tried two methods. In the
first I did not ranked the data and in the second, I projected the data, regarded
as a cloud of points, on the axis of Rd the closer to the cloud of points. Then
I divided the projected points in quantiles. I processed the data by making
batchs with observations which projection is in each quantiles, similarly to the
last mentioned approach.

I measured the performance of the ranking by estimating the distance be-
tween theoretical and empirical values of some functional of the simulated sam-
ples. For one dimensional data, as expected, the worst method is the one where
data are ranked by likelihood. And the best method is the one where the batchs
are balanced, that is, the method where batchs are made with one observation
in each quantiles. This confirm the intuition that an online inference method
is better when each batch of data is representative of the full dataset. This
method is significantly better than the non-ranking method. The worst method
gives bad results and should not be used by statisticians. It shows that the
ranking has an impact of the inference. Still, because the ranking algorithm is
not computationally demanding, it does not increase the simulation time. For
two dimensional data, ranking the data is slightly better than no ranking. Sit-
uations where it is really beneficial to rank the data is highly problem specific.

2

The next step is to try these ranking methods in very high dimensional data
contexts.

I was also interested in another type of inference algorithms, used when the
order of the observations is imposed. For example in Hidden Markov mod-
els, each observation only depends on the previous one through an unobserved
Markov chain. An online algorithm is an algorithm which forgets each data after
processing. Online algorithms are a way to save time of computation and mem-
ory in the computer. Therefore they are useful nowadays because algorithms
have to process a lot of, possibly high dimensional, observations.

I tried to generalize an online algorithm which would infer a parameter of an
Hidden Markov model. I generalized it to the case where the space of the ob-
servations is bigger. But it implies to do some approximations. I tried to adapt
an idea of my supervisor in this case. Actually, such an algorithm seems to re-
quire too many approximations in order to be considered as an implementable
solution.

Le sujet de ce stage porte sur l’analyse de données. Dans une première
partie, j’ai étudié l’influence de l’ordre dans lequel les données sont traitées et
son influence sur les performances d’un algorithme. Les données sont à valeurs
dans Rd. Dans le cadre d’un modèle bayésien, les données sont des variables
aléatoires de loi paramétrée par un vecteur aléatoire.Le but de l’algorithme que
j’ai étudié est de simuler selon la loi a posteriori du vecteur aléatoire c’est-à-
dire de simuler selon la loi du vecteur aléatoire sachant les données. Le nombre
de données est supposé être très grand donc l’algorithme doit traiter un petit
nombre de données à chaque étape.

J’ai testé différentes manières de classer les données avant le traitement.
Lorsque les données sont de dimension un, j’ai commencé par mesurer la perfor-
mance de l’algorithme sans ranger les données c’est-à-dire en les uniformément
tirant sans remise dans la masse de données. Ensuite j’ai testé de les classer par
”vraisemblance” croissante, dans une approche fréquentiste. Une observation
aura une vraisemblance élevée si elle est proche d’un grand nombre de données.
Cela veut dire qu’elle est dans une zone de forte densité. En dernier lieu j’ai
testé de ranger les données en séparant la masse de données en quantiles et en
formant des paquets de données en prenant une observation dans chaque quan-
tile. J’ai ensuite traité les paquets indépendamment. Lorsque les données sont
à valeurs dans un espace de dimension deux, j’ai essayé deux méthodes. Dans la
première je n’ai pas classé les données, comme précédemment. Dans la seconde,
j’ai projeté les données sur l’axe le plus proche du nuage de données. Sur l’axe
je les ai séparées en quantiles et comme précédemment. J’ai ensuite classée les
données en utilisant les données projetées.

J’ai ensuite mesuré la performance du classement en estimant les différences
entre des valeurs théoriques et des valeurs expérimentales de certaines fonc-
tions de la simulation. Dans le cas des données unidimensionnelles, comme
prévu, la méthode la moins efficace est de ranger les données par vraisemblance.
La meilleure méthode est celle dans laquelle les paquets de données sont tou-
jours équilibrés, c’est-à-dire celle où les paquets sont formés d’observations de
différents quantiles. Cela appuye la conviction que le traitement séquentielle
de données est meilleur lorsque chaque paquet de données est représentatif de
l’échantillon de données. Cette méthode est signficativement plus performante
que la méthode qui consiste à ne pas classer les données. La méthode la moins

3

bonne donne de mauvais résultats et ne devrait pas être utilisée par les statis-
ticiens. Cela elle montre que l’ordre dans lequel les données sont traitées a un
impact sur l’estimation finale. De plus, la meilleur méthode de classement n’est
pas coûteuse c’est-à-dire qu’elle n’augmente pas la durée d’une simulation. Dans
le cas des données bidimensionnelles, le classement (réèl) des données donne un
résultat légèrement meilleur. Les situations dans lesquelles l’on peut tirer d’un
classement dépend fortement du problème considéré. La prochaine étape est de
tester ce classement en grande dimension. Mais les résultats en grande dimen-
sion ne devrait pas être meilleurs qu’en dimension deux.

Dans une deuxième partie de ce stage, j’ai étudié un autre type d’algorithme
d’inférence, qui sont utilisables dans un cas où les données ont un ordre prédéfini.
Par exemple, dans les modèles de Markov cachés, chaque observation dépend
d’une certaine manière de la précédente, à travers une châıne de Markov non
observable. Certains algorithmes trâıtent les données en ligne, c’est-à-dire en
oubliant chaque donnée après son traitement. Ce genre d’algorithme permettent
d’économiser du temps de calcul et de la mémoire. Ils sont donc très utiles de
nos jours, à l’heure où les masses de données à trâıter sont de plus en plus
grandes.

J’ai essayé de généraliser un algorithme qui trâıte un modèle de Markov
caché en ligne afin d’inférer un paramètre de ce modèle de Markov caché. J’ai
pensé une généralisation possible dans le cas où la chaine de Markov sous-jacente
prend ses valeurs dans un espace possiblement très grand (non dénombrable).
Cela implique d’effectuer certaines approximations. J’ai utilisé une idée que
mon mâıtre de stage a développé dans un autre cadre. Mais dans le cas présent,
le nombre d’approximations à effectuer est trop grand pour que la généralisation
de cet algorithme soit implémentée.

4

Contents

1 Note de synthèse 2

2 Introduction 6

3 Is there a way to rank the data? 8
3.1 Importance sampling . 8
3.2 Iterated Batch Importance Sampling (IBIS) [1] 9

3.2.1 Degeneracy −→ Resampling 10
3.2.2 High correlations −→ Move with a markov chain kernel . 10
3.2.3 Fast mixing kernel : one application to all particles 11
3.2.4 An approximate move with nonparametric estimation? . . 12
3.2.5 Evaluation of the results 12

3.3 How to rank the data in dimension one 13
3.3.1 Data . 13
3.3.2 By drawing without replacement 15
3.3.3 By score of likelihood . 15
3.3.4 By quantiles . 17
3.3.5 Results . 17

3.4 How to rank the data in dimension d > 1 18
3.4.1 Data . 18
3.4.2 Principal Component Analysis (PCA) 22
3.4.3 Results . 23

4 Stochastic Approximation online Expectation-Maximization (SAoEM)
for Hidden Markov models (HMM) 24
4.1 Expectation-Maximization (EM) algorithm 24
4.2 Online EM . 25
4.3 Hidden Markov models (HMM) 26
4.4 SAoEM for HMM . 26

5 Conclusion 29

5

Chapter 2

Introduction

I am really grateful to Florian Maire for these ten weeks in Dublin, for supervis-
ing my work, and for the freedom he gave me in my work. I also want to thank
Pierre Alquier for his advices and Nial Friel for welcoming me in the Insight
Centre for Data Analytics.

Data analysis is about processing observed data in order to extract infor-
mation from them. The observations can be dependant or independant and
can be real numbers or vectors. Improvement of computer performances have
allowed statisticians to develop many methods to process data. But today, be-
cause of the large amont of data available, we need algorithms which can be
applied to a lot of observations. One of the approach is to process them online,
that is to process the observations one by one or by small (non overlapping)
batchs and to forget them forever after processing. Such methods allow the
computer not to accumulate observations, which can lead to a significant save
in memory, especially when data are high dimensional vectors. Subsequently
for iterative algorithms, the online paradigm allows not to browse all the data
at each iteration, which can considerably speed up the inference.

In the first part of my work, I have investigated if, in situations where the
observations are independant and identically distributed, the order in which we
process them has any kind of influence on the inference quality. To address
this question, the milestones I defined were twofold: (i) find an algorithm which
processes the data online and (ii) compare the influence of different ranking
strategies on the main algorithm efficiency. The Iterated Batch Importance
Sampling (IBIS) algorithm (see [1]), which takes inspiration from the Sequen-
tial Importance Sampling with Resampling methodology but for static models,
matches our framework and was used as an example of online algorithm. Dif-
ferent heuristics were considered when dealing with the ranking of the data.
For one dimensional simulated data, we see that some stragies of ranking are
really better than others. For example we can divide the bias by three with a
good strategy of ranking. It can also reduce the variance of this bias on several
simulations. In dimension two, the results are not as striking but a proper rank-
ing could still yield a slight impact. Therefore ranking methods can be used to
improve the inference.

On the other hand, I was also interested in algorithms for dependant data
which yields a totally different approach: indeed, in such situations one cannot
rank the data before using them. Still, some existing online algorithms have

6

been proposed to infer typically non independent data such as Hidden Markov
models (a model featuring markovian dependence between the observations),
see [5]. We have questionned the feasibility of extending such an approach to
more complex models, where typically the conditional expectation that appears
at each iteration of the algorithm cannot be computed in closed form, following
the development of [6].

The report is organized as follows. In a first part we will present an algo-
rithm which process independant data, the IBIS algorithm and try different way
to rank the data. In a second part we will try to adapt the Stochastic Approx-
imation online Expectation-Maximization (SAoEM) algorithm, an algorithm
which designed for independant data, to the case where data are dependant and
following an Hidden Markov model.

7

Chapter 3

Is there a way to rank the
data?

3.1 Importance sampling

Let (Θ, B, λ) be a measured space. Let p(dθ) and q(dθ) be two probability
measures on this space with density p and q according to λ.

Assume that the support of p is included in the support of q. For any
measurable and p(dθ)-integrable real function f our aim is to approximate∫

Θ

f(θ) p(dθ) =

∫
Θ

f(θ)p(θ)λ(dθ) =

∫
Θ

f(θ)
p(θ)

q(θ)
q(dθ)

where all the quantities written are well defined. If sampling from q is fea-
sible, one can sample θ1, θ2, . . . , θn a sequence of independent and identically
distributed random variables from q. According to the strong law of large num-
bers,

1

n

n∑
i=1

f(θi)
p(θi)

q(θi)
−→

∫
Θ

f(θ) p(dθ)

and
1

n

n∑
i=1

p(θi)

q(θi)
−→

∫
Θ

p(dθ) = 1

a.s. when n grows to infinity.
Therefore, ∑n

i=1 f(θi)
p(θi)
q(θi)∑n

i=1
p(θi)
q(θi)

−→
∫

Θ

f(θ) p(dθ)

a.s.

Notation : ∀i ≤ n,wi = p(θi)
q(θi)

. The sequence ((θi, wi))i is called a

particle filter targeting p. The θi are the particles and the wi are the
unormalized importance weights.

8

Assume that n is fixed. The two following points justify using of the IBIS
algorithm.

• We have a specific particle filter and we want to compute an expectation
under an other probability measure, say r(dθ) which admits a density r
with respect to λ. To do so, we only need to update the weights

∀i, wi ←− wi
r(θi)

p(θi)
.

By straightforawrd algebra, it can be shown that for a general particle

filter ((θi, wi))i targeting p, the reweighting step ∀i, wi ←− wi r(θi)p(θi)
results

in a particle filter targeting r ; an idea which has been intensively used to
design IBIS ([1]).

• If ((θi, wi))i is targeting a distribution p, and if λ > 0 is a real number, in-
dependant of i, then ((θi, λwi))i is also targeting p because the importance
sampling estimator remains unchanged∑n

i=1 λwif(θi)∑n
i=1 λwi

=

∑n
i=1 wif(θi)∑n

i=1 wi
−→

∫
Θ

f(θ) p(dθ).

3.2 Iterated Batch Importance Sampling (IBIS)
[1]

Let N be a fixed positive integer and Y1, Y2, . . . , YN be a sequence of independent
and identically distributed random variables. We use the Lebesgue measure as
the reference measure. Assume that

∀i, Yi ∼ p(.|θ)

where p is the likelihood of one observation, and the distribution of the Yi is
parameterized by a random vector θ.

• We use a bayesian strategy : the prior distribution of θ is π(.) and the
posterior distribution of interest is π(.|Y1, Y2, . . . , YN).

• The idea of IBIS is to compute a particle filter targeting π(.|Y1, Y2, . . . , Yk+q)
for the current k given a particle filter targeting π(.|Y1, Y2, . . . , Yk). At the
end of the algorithm we get a particle filter targeting π(.|Y1, Y2, . . . , YN).

• One step of the algorithm is the reweighting:

wi ← wi ×
π(θi|Y1, Y2, . . . , Yk+q)

π(θi|Y1, Y2, . . . , Yk)
∝ wi × p(Yk+1|θi)...p(Yk+q|θi),∀i.

Where ∝ means proportionnal up to the constant∫
p(Y1|θ)...p(Yk|θ)π(θ) dθ∫
p(Y1|θ)...p(Yk+q|θ)π(θ) dθ

where π(dθ) denotes the prior distribution on the parameters. This con-
stant does not depend on θi. In this algorithm, the data are sliced into

9

batches of the same size, say q. That is, at the first step of the IBIS
algorithm the particle filter targets π(.|Y1, Y2, . . . , Yq), at the next step it
targets π(.|Y1, Y2, . . . , Y2q), at the next step it targets π(.|Y1, Y2, . . . , Y3q)
etc. This algorithm is an online algorithm because if the particle filter is
currently targeting π(.|Y1, Y2, . . . , Yk), for the reweighting step

wi ← wi ×
π(θi|Y1, Y2, . . . , Yk+q)

π(θi|Y1, Y2, . . . , Yk)
∝ wi × p(Yk+1|θi)...p(Yk+q|θi),∀i,

we only need to know the next batch Yk+1, ..., Yk+q and we don’t need
to remember the past observations Y1, ..., Yk. A convergence result of a
measure of efficiency of the method was shown in [1] for q growing at each
step but we will conserve a fixed number of observations by batch.

3.2.1 Degeneracy −→ Resampling

As described, the algorithm is likely to suffer from degeneracy: some particles
will get almost all the weight of the particle filter and other particles will have a
small weight (close to zero) because at each step we are multiplying the weights.
It’s the weight degeneracy. The particles with a small weight are not useful for
the particle filter (to target the right distribution) but they add variance to the
particle filter. To avoid it, and as suggested in [1], we will resample the particle
filter, that is duplicate particles with an high weight and forget particles with a
small one and put all the weights to one.

I used a multinomial selection. If the normalised weight of θi is w′i =
wi∑n
i=1 wi

. I drew the random vector (a1, ..., an) from a multinomial distribution

of parameters (n, (w′i)i∈[0,n]). Then I duplicated the particle θi ai times.
After the resampling step, we have a particle filter of n particles, the same

than before the resampling, but some particles have been duplicated and some
have been deleted. And the new unormalized weights are all one. It avoids
very large weights, and by getting rid of the particles which are not useful for
the inference (with a small weight), it saves some time of calculation. But it
doesn’t avoid the degeneracy as well. After the resampling the particle filter is
still targetting π(.|Y1, ..., Yk+q).

3.2.2 High correlations −→Move with a markov chain ker-
nel

To duplicate some particles introduces high correlations between the particles
of the particle filter. To avoid these correlations in the particle filter we add a
move step as follows.

Assume the particle filter is now targeting the distribution π(θ|Y1, Y2, . . . , Yk)
and we have reweighted and resampled the particle filter. Assume we have a
Markov kernel Q which has π(.|Y1, Y2, . . . , Yk) as its unique stationnary distri-
bution. If we apply one time the Markov kernel Q to all the particles, we will
get new particles sampled from π(θ|Y1, Y2, . . . , Yk) and it will reduce the corre-
lations in the particle filter because it will move the particles. For example, if
θi and θj where equal before the move step, they were highly correlated, but
after the move step they are generally no longer equal.

10

3.2.3 Fast mixing kernel : one application to all particles

In this approach we intend to apply one time a fast mixing Markov kernel Q to
the particles to reduce the correlations.

When the observations are real numbers, I tried a Metropolis-Hastings ker-
nel. I used the Metropolis-Hastings algorithm in the independant case with a
normal distribution f as a proposal distribution. The expectation of the normal
distribution is the empirical mean of the particles and the variance the empirical
variance of the particles. I applied one step of the Metropolis-Hastings algorithm
to each particle θ which can be discribed as follows. Given the current particle
filter ((θi, 1))i∈[0,n] (after the resampling the unormalized weights are all one),
compute the empirical mean and the empirical variance of the particle filter :
µ = 1

n

∑n
i=1 θi and v = 1

n

∑n
i=1(θi − µ)2. Let h be the density of the normal

distribution N(µ,
√
v) of mean µ and variance v. Then, for all i ∈ [0, n],

• Draw t ∼ N(e, v)

• Draw u ∼ U(0, 1)

• Compute

α(θi, t) =
h(θi)π(t)

∏k+q
j=1 p(Yj |t)

h(t)π(θ)
∏k+q
j=1 p(Yj |θ)

(At this step we browse all the observations)

• If u < α(θi, t) then θi ←− t

This is the move step. I used the Metropolis-Hastings algorithm in an inde-
pendant case. The move step is one application to all particles of the reversible
Markov kernel

Q : (θ,A) 7−→
∫
A

h(t)α(θ, t)dt+ 1A(θ)

∫
R

h(t)(1− α(θ, t))dt

for all θ ∈ R and all A ⊂ R measurable.
Looking for a fast mixing kernel, I tried to use a simulation method I studied

last year. Its name is the Hamiltonian Monte Carlo algorithm. It looks like
the Monte Carlo algorithm but at each iteration of the Hamiltonian Monte
Carlo algorithm one have to solve (numerically) a differential equation. To
sample for a distribution called the banana, this algorithm converges faster
than the Metropolis-Hastings algorithm. Let L be the intermediate number of
step we use to solve the differential equation we solve at each iteration of the
Hamiltonian Monte Carlo. In one iteration of Metropolis Hastings we browse one
time all the data Y1, ..., YN when we compute the ratio α(θ, t). In one iteration
of Hamiltonian Monte Carlo we browse L times all the data. At each step of
the integration of the differential equation we have to compute the gradient of

θ 7−→ log(π(θ|Y1, Y2, . . . , Yk+q))

in one point so in the Hamiltonian Monte Carlo algorithm we need to browse
the data L times. Moreover it can fail if large numbers appear while computing
the gradient of this function.

11

3.2.4 An approximate move with nonparametric estima-
tion?

Because of the move step we no longer work online. To apply the
Markov kernel Q we have to browse all the past observations Y1, ..., Yk. To solve
this problem I thought about getting an approximation of π(θ|Y1, Y2, . . . , Yk) us-
ing the particles after the resampling step and apply the move step with a kernel
which have the distribution π̂k(θ) (an approximation of π(θ|Y1, Y2, . . . , Yk)) as
its unique stationnary distribution. π̂k(θ) is a kernel estimator of the density
of Y1, ..., Yk. If Y1, Y2, . . . , Yk are drawn from π(θ|Y1, Y2, . . . , Yk), using the non-
parametric statistics theory we know that the error between π(θ|Y1, Y2, . . . , Yk)
and its approximation π̂k(θ) decreases to 0 as the number of observations k
grows to infinity.

Assume that Y1, Y2, . . . , Yk are drawn from π(θ|Y1, Y2, . . . , Yk) and we have
an nonparametric estimation π̂k(θ) of π(θ|Y1, Y2, . . . , Yk) using the particles after

the resampling step. We move the particles with a Markov kernel Q̂ which has
π̂k(θ) as its unique stationnary distribution. Before the move step the particles
are not really drawn from π̂k(θ) (it is an estimation of the density), so after the
move step, we get particles which are not really drawn from π̂k(θ) but we don’t

take into account this fact (for an ergodic Markov kernel Q̂ the distribution of
the particles are closer to π̂k(θ) after the move step than before). After the move

step with Q̂, we have particles sampled from π̂k(θ) and the particle filter targets
π̂k(θ). At the next step of the IBIS algorithm, we keep the reweighting step so the
new particle filter won’t target π(θ|Y1, Y2, . . . , Yk+q) because the current particle
filter is targeting π̂k(θ) rather than π(θ|Y1, Y2, . . . , Yk). And the next move step
will introduce a new error of sampling etc. There is no obvious reason for
the error of simulation to decrease. In nonparametric statistics theory we have
asymptotical results for the kernel estimator of a fixed density when the number
of observations grows to infinity, whereas in the IBIS algorithm, the target
distribution changes a each step. Moreover, if we imagine that we only have one
step in the IBIS algorithm which takes the batch of all the N observations, at
the end of the algorithm the particle filter won’t target π(θ|Y1, Y2, . . . , YN) but
π̂N (θ) (or a distribution closed to this one).

Actually, there is ”no free lunch”. Using only the information contained
in the particle filter, we cannot remove the correlations between the particles
without loosing something. Otherwise, it means that we won information about
the particles for ”free”, knowing nothing but the information in the current
particles .

3.2.5 Evaluation of the results

At the end of IBIS we have a particle filter where the weights are all equal to one
and the particles are sampled from π(θ|Y1, Y2, . . . , YN). To measure the quality
of the simulation we compute, for some integrable function f ,

| 1
n

n∑
i=1

f(θi)−
∫

Θ

f(θ)π(dθ|Y1, Y2, . . . , YN)|.

For example, I used f : x 7−→ x and f : x 7−→ x2 in my simulations in
dimension one.

12

We can also use the total variation distance to measure the distance between
the empirical distribution

1

n

n∑
i=1

δθi

(where the θi are the particles at the end of the algorithm and δx is the Dirac
measure in x) and the theoretical one

π(dθ|Y1, Y2, . . . , YN).

The empirical distribution does not have density according to Lebesgue mea-
sure so we connot use simple formulas to compute the total variation distance
between the two distributions.

3.3 How to rank the data in dimension one

3.3.1 Data

Data are sampled from a mixture of two normal distributions p,

p(x) = 0.6p0,1(x) + 0.4p2,0.1(x)

where pm,σ is the density of a normal distribution N(m,σ) of mean m and
standard deviation σ, see figure 3.1.

The prior distribution π of the particles is a normal distribution N(2, 1). At
the first iteration of the IBIS algorithm, the first reweighting is

wi ← wi ×
π(θi|Y1, Y2, . . . , Yq)

π(θi)
∝ wi × p(Yk+1|θi)...p(Yq|θi),∀i.

At the initialization, the particles are sampled from π = p2,1. The likelihood of
the observations is pθ,1 = p(.|θ) the density of the distribution N(θ, 1). And one
can derive the posterior distribution of the particles

π(θ)

N∏
i=1

p(yi|θ) ∝ exp(−1

2
((N + 1)θ2 − (4 + 2

N∑
i=1

yi)θ + (4 +

N∑
i=1

y2
i))).

It’s a normal distribution N(m,σ) of mean

m =
4 + 2

∑N
i=1 yi

2N + 2

and variance

σ2 =
1

N + 1
.

The second moment of this distribution is

m2 + σ2 =

(
4 + 2

∑N
i=1 yi

2N + 2

)2

+
1

N + 1
.

We will need these quantities for the evaluation of the results. I used 100
observations and did batchs of size 5. The number of particles in the particle
filter is 100.

13

Figure 3.1: Mixture model in dimension one

14

For each method of ranking I did 74 simulations and computed

| 1
n

n∑
i=1

θi −
∫

Θ

θ π(dθ|Y1, Y2, . . . , YN)|

and

| 1
n

n∑
i=1

θ2
i −

∫
Θ

θ2 π(dθ|Y1, Y2, . . . , YN)|

at each simulation. Then I computed the mean and the variance of these quan-
tities on the 74 simulations.

3.3.2 By drawing without replacement

The first setup consists in drawing the data without replacement: this is a non-
ranking strategy to which we will compare other ranking approaches. I used
sampled data and divided them by batchs. It’s like drawing the batchs without
replacement. With this method, the batchs should be representative of the
distribution of the observations, that is the distribution of the batchs should be
close to the distribution of the whole sample of data. For example, we select
with an high probability observations from an high probability region.

We consider two strategies to rank the data.

3.3.3 By score of likelihood

An other approach is to really rank the data. There are different way to do that,
for example using a criterion which score the observations. An idea is to rank
the data by ”representativity of the sample” or by ”likelihood” (I don’t use the
word ”likehood” is its traditional sense in statistics). I wondered if there is a
canonical way to score the data, the score representing their representativity in
the whole sample. We assume in this section that the data Y1, ..., YN are points
in Rd and use a deterministic approach. Let

f : (x1, ..., xN) 7−→ f(x1, ..., xN)

be a map from RdN to R which represents the score of x1. What can we say
about f?

First, if we turn the point Yi around Y1 it shouldn’t change the score. There-
fore, f only depends on the distance from Y1 to the other data points, or any
other injective function on these distances. Let be ‖.‖ the euclidean norm. We
can write

f(x1, ..., xN) = g(K(‖x1 − x2‖), ...,K(‖x1 − xN‖))

for all choice of (x1, ..., xN), Where

g : (a2, ..., aN) 7−→ g(a2, ..., aN)

from RN−1 to R and
K : x 7−→ K(x)

is an injective map from R+ to R. Now, if x1 is going far from the other points
of the cloud xi the score of x1 should decrease so we choose g increasing for
each ai and K decreasing.

15

Then g is a symmetric function : the value of g(a2, ..., aN) does not depend

on the rank of the ai. This essentially means that the values of g on RdN−1

are determined by the values of g on S = {(a2, ..., aN) ∈ RdN−1
, a2 ≤ a3 ≤

... ≤ aN}. But there are results from the theory of symmetric functions which
explain that we can change the variable of g and conserve the regularity of the
function g.
Let p be a positive integer and σ1(z1, ..., zp), ..., σp(z1, ..., zp) be the elementary
symmetric functions in (z1, ..., zp)

∀k ∈ {1, ..., p}, σk(z1, ..., zp) =
∑

1≤s1<...<sk≤p

k∏
j=1

zsj .

In the theory of symmetric functions we know that, if

g : (a2, ..., aN) 7−→ g(a2, ..., aN)

is a symmetric polynomial function, there is an unique polynomial function h
and an unique function h̃ such that

g(a2, ..., aN) = h(σ1(a2, ..., aN), ..., σN−1(a2, ..., aN))

and
g(a2, ..., aN) = h̃(

∑
ai, ...,

∑
aN−1
i)

There are analogous of this theorem for other regularity : for example if g is a
smooth function we can find an unique smooth function h such that the equality
is right for all (a2, ..., aN) ∈ RN−1 ([7]). Therefore, if we assume that g is a
smooth function, we can rewrite

f(x1, ..., xN) = h(σ1(K(‖x1−x2‖), ...,K(‖x1−xN‖)), ..., σN−1(K(‖x1−x2‖), ...,K(‖x1−xN‖)))

or,

f(x1, ..., xN) = h(K(‖x1−x2‖)+...+K(‖x1−xN‖), ...,K(‖x1−x2‖)×...×K(‖x1−xN‖))

for all (x1, ..., xN) where h is a smooth function. (And, in the equality if we
take h̃ to be a linear form we find all functions

f(x1, ..., xN) =
1

N − 1

N∑
i=2

P (‖x1 − xi‖)

where P is a polynomial function of degree< N.)
Under this assumption, the choice of a ”good” function f for our problem is

the choice of K and h.
Rewriting f in this form reminds the kernel estimator : if K is a kernel and h

is the first coordinate application we find a function which looks like the kernel
estimator. But we made some regularity assumption so we don’t find exactly
all kernels. For example the kernel of the histogram estimator is not a smooth
function on R+. But there are analogous results if we replace smooth function
by continuous function. We take K as a smooth stricly decreasing function, and
h as a smooth function.

16

In the initial problem, N is supposed to be big. Except K(‖x1−x2‖) + ...+
K(‖x1 − xN‖) and K(‖x1 − x2‖)× ...×K(‖x1 − xN‖) the other terms are the
result of at least O(N2) operations. We will choose h independant on this terms.
The term K(‖x1−x2‖)×...×K(‖x1−xN‖) is the product of a lot of numbers and
it can give a large number or a number close to zero. When there is a product
of a lot of numbers in algorithms, one often use the log to reduce the number.
If we compute the log of this term, it will change the product in a sum like the
first term and we will get another ”kernel” log(K). We finally choose to take h
only dependant on the first term, the sum K(‖x1 − x2‖) + ...+K(‖x1 − xN‖).

If the point xi of the cloud are going far from x1, f(x1, ..., xN) must decrease
strictly so we will choose h stricly increasing. Our aim is to compare the values
of f(x1, ..., xN) to score the data in order to rank them. We are now working
for x1 but we will do the same for the other xj and we will compare the values
of the numbers h(K(‖xj − x2‖) + ... + K(‖xj − xN‖)) for all j to score and
rank the observations. Because we are interested in ranking, we only need to
know the numbers K(‖xi−x2‖) + ...+K(‖xi−xN‖) to rank the data. Finally,
the expression is similar to the kernel estimator so I used it directly for the
simulations. I used a gaussian kernel and a bandwidth of 0.94.

Let’s forget the bayesian framework in this part. Given the data Y1, ..., YN ,
I did a nonparametric estimation of the density of the distribution of the data
(with a gaussian kernel) and found a function h. I computed h(Y1), ..., h(YN) and
scored the data with these numbers and ranked them in increasing order. These
numbers can be interpreted as estimations of the likelihood of the distribution
of the Y1, ..., YN . I performed the IBIS algorithm with this ranking.

We expect this ranking to be very inefficient. The data are sampled from a
mixture of normal distribution. At the end of the algorithm, the data processed
are only close to 0 or very close to 2. Whereas at the beginning of the algorithm
there are farer from 0 or 2. So at the beginning of the algorithm the particles
are in a region and then we start to process ”only 0 and 2” and it can trap the
particles in another region.

3.3.4 By quantiles

In this third approach we force the batchs to be representative : the empirical
distribution of the batchs will be closer to the distribution of the observations.
The observed data are real numbers. We identify the quantiles of the sample
and make the batchs by choosing (randomly) one observation in each quantile.
In this method the batchs are more representative, for example we cannot have
a batch where all the data are in one quantile. With this method we avoid the
phenomenon of the previous section. The batchs are always balanced.

3.3.5 Results

On the 74 simulations of the three previous methods, the mean and the variance
of the bias

| 1
n

n∑
i=1

θi −
∫

Θ

θ π(dθ|Y1, Y2, . . . , YN)|

17

By drawing without replacement By score of likelihood By quantiles
Mean Variance Mean Variance Mean Variance

0.00217 0.00070 0.75573 0.05521 0.00071 0.00020
0.00300 0.00191 0.63823 0.06414 0.00090 0.00047

Table 3.1: Results in dimension one

is on the first line of the table 3.1 and the mean and the variance of

| 1
n

n∑
i=1

θ2
i −

∫
Θ

θ2 π(dθ|Y1, Y2, . . . , YN)|

is on the second line of the table 3.1.

A method is undersood to be better than another one when the mean and
the variance of the bias of the first and second order statistics are smaller. As
expected, the best strategy is clearly to rank the data by quantiles and the worst
to rank them by likelihood, the naive ranking liying in between. Ranking by
quantiles yields a factor 2 between the two means of the quantities, compared
to the drawing without replacement. And it divides the variances by almost
four. Ranking the data by score of likelihood multiplies the means by 200 and
it also increases the variances compared to the drawing without replacement.
This strategy actually consists in feeding the algorithm with batches that are
highly unrepresentative of the full dataset, hence yielding unsurprising poor
results. When ranking the data by likelihood in ascendant order, the method
starts infering the posterior through data that are in the tail of the likelihood.
Thus, early estimates obtained from misleading observations may dramatically
affect the convergence of the method. Reciprocally, when ranking the data
by likelihood in descendant order, the estimate may fail to stabilize due to
unconsistancy of the observations processed while having supposedly reached
stationarity, hence yielding high variance in the monitored statistics.

In addition, in the three previous methods, there is no significant difference
of processing time in the IBIS algorithm.

3.4 How to rank the data in dimension d > 1

3.4.1 Data

The new prior distribution π of the particles is (θ[1], θ[2]) 7−→ π(θ[1], θ[2]) =
p2,20(θ[1])p2,20(θ[2]). The likelihood of the observations is p(.|(θ[1], θ[2])) : (y[1], y[2]) 7−→
pθ[1],20(y[1])pθ[2],20(y[2]). It means that the components of the particles and the
observations are supposed to be independant. One can derive the posterior
distribution of the particles

π(θ)

N∏
i=1

p(yi|θ) =

(
p2,20(θ[1])

N∏
i=1

pθ[1],20(y[1]i)

)(
p2,20(θ[2])

N∏
i=1

pθ[2],20(y[2]i)

)

∝
∏

j∈{1,2}

(
exp

(
− 1

2× 202

(
(N + 1)θ[j]2 − (4 + 2

N∑
i=1

y[j]i)θ[1] + (4 +

N∑
i=1

y[j]2i)

)))
.

18

In this expression, we can clearly see how to generalize in dimension d > 2. This
is a two dimensional normal distribution N(m,σ) with mean

m =

(
4 + 2

∑N
i=1 y[1]i

2N + 2
,

4 + 2
∑N
i=1 y[2]i

2N + 2

)

and variance

σ2 = diag

(
202

N + 1
,

202

N + 1

)
.

The second moment of the first component is(
4 + 2

∑N
i=1 y[1]i

2N + 2

)2

+
202

N + 1

and we get the second moment of the second component by replacing [1] by [2].
The first crossed moment is (by independance)

4 + 2
∑N
i=1 y[1]i

2N + 2
×

4 + 2
∑N
i=1 y[2]i

2N + 2

I did 100 simulations by drawing without replacement and by performing the
PCA method (see the following section). There are generalizing in dimension
two the two best methods in dimension one.

I computed the mean and the variance of these quantities on the 100 simula-
tions. I used 100 observations and did batchs of size 5. The number of particles
in the particle filter is 100.

I used two kinds of data. I first considered data from a mixture of two Gaus-
sians N((0, 0), diag(20, 20)) and N((10, 10), diag(2, 2)) with the density (see the
figure 3.2)

(y[1], y[2]) 7−→ 0.6p0,20(y[1])p0,20(y[2]) + 0.4p10,2(y[1])p10,2(y[2]).

Then, I considered data from a 2-dimensional banana shape target, with
density proportional to (see the figure 3.3, the distribution is not scaled)

(y[1], y[2]) 7−→ exp

(
−y[1]2

200
− 1

2
[y[2]− 0.03(y[1]2 − 100)]2

)
To sample from this distribution, I implemented an Hamiltonian Monte Carlo
algorithm which I used as groundtruth.

Should the likelihood be an independant product of normal distribution of
standard deviation 1, some observations would have a very low likelihood and
the estimation would fail. That’s why I multiplied all the length in this section.

I adapted the move step and the proposition distribution. The proposition
distribution is now an independant product of two normal distributions, with
means the empirical means and with variances the empirical variances.

I implemented IBIS for the two dimensional observations data and the two
dimensional parameters (particles).

19

Figure 3.2: Mixture model in dimension two

20

Figure 3.3: Banana in dimension two

21

3.4.2 Principal Component Analysis (PCA)

In dimension one, the best method is to choose the batchs by quantiles. If we
want to use this idea in dimension d > 1 we have to use an order on Rd. Rather
than using the lexical order on Rd, I reduced the dimension of the data with
a Principal Component Analysis (PCA) and projected the data on the more
representative axis of this PCA. Then, I applied the method I used on the real
line on this axis.

We are in a simple case of PCA. We have a cloud of points x1, ..., xN , which
is supposed to be centered x1 + ...+ xN = 0. Let M be the matrix of the cloud,
i.e the column i of M is the coordinates of the xi in the canonical base of Rd.
We want to find ”the” subspace of dimension 1 the closer to the cloud of points,
that is we want to solve

inf
D

N∑
j=1

‖xj − pD(xj)‖2

where the inf is taken on all subspaces D of dimension 1 and, pD is the orthog-
onal projector on D. For all j and all subspaces D we have

‖xj − pD(xj)‖2 + ‖pD(xj)‖2 = ‖xj‖2

and the quantity
∑N
j=1 ‖xj‖2 is fixed in our problem so we just have to solve

sup
D

N∑
j=1

‖pD(xj)‖2.

Let D be a subspace of dimension 1 and let a be a normalized vector in D.
Then,

N∑
j=1

‖pD(xj)‖2 =

N∑
j=1

(a|xj)2 =

N∑
j=1

(a|xj)2
d = (M ta|M ta)N = atMM ta

where (.|.)k is the scalar product on Rk and M t is the transpose matrix of M.
Finally we have to solve

sup
‖a‖=1

atMM ta.

MM t is a real positive symmetric matrix so we know that an eigenvector, say
e, for the highest eigenvalue, say λ, satisfies

sup
‖a‖=1

atMM ta = λ = etMM te.

Then, if D = Span(e) we compute pD(x1), ..., pD(xN) and we can rank the data
by quantiles replacing the real line by D. The method is expected to be fast
because there are powerful algorithms to perform the PCA but by projecting
the data on one axis we loose a lot of information about it, even if the axis is
the better axis.

22

By drawing without replacement By performing a PCA
Mean Variance Mean Variance
0.0176 0.1882 0.0563 0.1186
0.0076 0.2255 0.0052 0.1217
0.1293 14.5209 0.5874 10.4158
0.0259 14.7266 0.0901 9.6481
0.0523 6.3279 0.0903 3.292011

Table 3.2: Results in dimension two for the mixture model

By drawing without replacement By performing a PCA
Mean Variance Mean Variance
0.1072 0.1498 0.0255 0.2888
0.1165 0.3337 0.1269 0.1698
0.3574 2.2984 0.2337 3.8184
2.0019 191.8019 2.8221 82.7178
1.3501 26.27129 0.4125 37.2220

Table 3.3: Results in dimension two for the banana

3.4.3 Results

I compared the results of the two methods by computing

| 1
n

n∑
i=1

θ[j]i −
∫

Θ

θ[j]π(dθ|Y1, Y2, . . . , YN)|

at each simulation for j = 1 (see the first line of the tables 3.2 and 3.3) and for
j = 2 (see the second line of the tables 3.2 and 3.3). I computed

| 1
n

n∑
i=1

θ[j]2i −
∫

Θ

θ[j]2 π(dθ|Y1, Y2, . . . , YN)|

at each simulation for j = 1 (see the third line of the tables 3.2 and 3.3) and
for j = 2 (see the fourth line of the tables 3.2 and 3.3). I also computed the
difference of the empirical and the theoretical crossed moments (see the fifth
line of the tables 3.2 and 3.3)

| 1
n

n∑
i=1

θ[1]iθ[2]i −
∫

Θ

θ[1]θ[2]π(dθ|Y1, Y2, . . . , YN)|.

We expected the PCA method to be better than drawing without replace-
ment. It is not clear with those results. For the sampling from a banana the
means for the PCA method are sometimes smaller than the means for the draw-
ing without replacement, for example in the first and the last lines. The means
are more than three times smaller but the variances are higher. For the sampling
from a mixture of normal distribution we cannot say that the PCA methods is
globally better than the drawing without replacement with these results.

23

Chapter 4

Stochastic Approximation
online
Expectation-Maximization
(SAoEM) for Hidden
Markov models (HMM)

4.1 Expectation-Maximization (EM) algorithm

Assume we observe two random variables X and Y . X is the missing data and
Y the observed data. Assume that (X,Y) is drawn from Pθ where θ ∈ Θ and
Θ is a set of deterministic finite-dimensional parameter. The likelihood in this
model is

f(X,Y, θ)

and the available likelihood is

L(Y, θ) =

∫
f(x, Y, θ) dx.

Our aim is to perform a likelihood maximization for θ. We define the conditional
probability density function of X given Y

p(x|Y, θ) =
f(x, Y, θ)

L(Y, θ)
,

the available log-likelihood

l(Y, θ) = log(L(Y, θ))

and the intermediate quantity of the EM algorithm

Q(Y, θ, θ′) =

∫
log(f(x, Y, θ))p(x|Y, θ′) dx = Eθ′(f(X,Y, θ)|Y)

24

The intermediate quantity will be useful to perform the likelihood maximization
because of the fundamental inequality :

l(y, θ)− l(y, θ′) ≥ Q(y, θ, θ′)−Q(y, θ′, θ′)

which is an equality if and only if

θ = θ′.

The Expectation-Maximization algorithm builds a sequence (θi) of parameter
estimates given an initial guess θ0. The iteration i of the algorithm is divided
in two steps as follows :

• Expectation step (E-step) : Compute θ 7−→ Q(y, θ, θi)

• Maximization step (M-step) : Choose θi+1 among the values that maxi-
mize the function in the E-step.

The idea in this algorithm is that each iteration will determine a value θi+1

which increases the log-likelihood because of the fundamental inequality.

4.2 Online EM

Assume that X = (Xi)i and Y = (Yi)i where (X1, Y1), ..., (XN , YN) are inde-
pendant and identically distributed from Pθ (note that in the previous section
Pθ was the distribution of (X,Y), but if Pθ is fully determinated by θ then the
distribution of (X,Y) is fully determinated by θ since the observations are i.i.d).

Qn(Y, θ, θ′) =
1

n
Eθ′(log(Ln(X,Y, θ))|Y) =

1

n

n∑
i=1

Eθ′(log(L(Xi, Yi, θ))|Yi)

where Ln is the likelihood for n observations and Qn the intermediate quantity
for n observations normalized by n. We can link the intermediate quantity for
n observations to the intermediate quantity for n+ 1 observations.

Qn+1(Y, θ, θ′) = Qn(Y, θ, θ′)+
1

n+ 1
(Eθ′(log(L(Xn+1, Yn+1, θ))|Yn+1)−Qn(Y, θ, θ′))

In ([4]) the author uses the formula to derive an online EM algorithm where the
E-step is online and is about computing an approximation of the intermediate
quantity. The M-step is the maximization of the approximate intermediate
quantity. The iteration n is

• E-step : Compute

Q̂n+1 : θ 7−→ Q̂n(θ) +
1

n+ 1
(Eθ̂n

(log(L(Xn+1, Yn+1, θ))|Yn+1)− Q̂n(θ))

• M-step : Choose θ̂n+1 among the values that maximize the function in
the E-step.

In general, the expectation Eθ̂n
(log(L(Xn+1, Yn+1, θ))|Yn+1) cannot be com-

puted in the closed form. Therefore in [6] the authors add an simulation step
before the E-step. In this step they sample a reversible Markov chain having
P
θ̂n
|Yn+1 as its unique stationnary distribution and they approximate this ex-

pectation by an ergodic mean. This approach was introduced in [2] in a static
framework (not online) and the SAEM algorithm still converges.

25

Figure 4.1: Hidden Markov model

4.3 Hidden Markov models (HMM)

”A hidden Markov model (HMM) is, loosely speaking, a Markov chain ob-
served in noise.” (see [3] for an introduction to HMM.) It’s a stochastic process
(Xk, Yk)k≥0 where (Xk) is a Markov chain (which is hidden) and for all k ≥ 0,
Yk is an observed random variable which only depends on Xk. In several cases
a HMM (Xk, Yk)k≥0 can be represented like that :{

Xk+1 = a(Xk, Uk)
Yk = b(Xk, Vk)

where (Uk) and (Vk) are sequences of independant variables, independant on X0,
and a and b are measurables functions. The first equation gives the dynamic of
the model and the second gives the observation scheme.

It can be represented as follows (4.1).

A particular case of HMM, a fully dominated HMM, is a Markov chain
(Xk, Yk)k≥0 (taking its values in a product of measurable spaces χ×R) which
kernel has density according to µ× λ, t and can be written

t((x, y), (x′, y′)) = q(x, x′)g(x′, y)

where q is the density of a transition kernel of the Markov chain (Xk) from χ
to χ, g the density of a conditional transition kernel from χ to R, µ a

erence measure on χ and λ the Lebesgue measure.

4.4 SAoEM for HMM

We observe a (part of a) HMM (X1,Y1), ..., (XN , YN) where X = (Xi)i is the
hidden data and Y = (Yi)i the observed data. Assume that the HMM is entirely
determinated by a finite-dimensional parameter θ. We have

Ln(X,Y, θ) = νθ(X1)gθ(X1, Y1)qθ(X1, X2)...qθ(Xn−1, Xn)gθ(Xn, Yn)

with the same notations, where νθ is the distribution of X1 and is entierly
determinated by θ.

26

Then,

nQn(Y, θ, θ′) = Eθ′(log νθ(X1)|Y) +

n∑
i=2

Eθ′(log pθ(Xi, Yi|Xi−1)|Y)

where pθ(x, y|x′) = qθ(x
′, x)gθ(x, y). In the i.i.d case we could say that the Yi are

i.i.d and simplify the conditonal expactation to derive an equality between Qn+1

and Qn. Here, we cannot generalize directly this equality because we observe
a HMM. One can check that the following formula for the particular case of
HMM where the observations are i.i.d is exactly this equality. We forget the
dependance on the Yi in the notations and write Y0:n for the sequence Y1, ..., Yn.

φn,θ′(x) = Pθ′(Xn = x|Y0:n)

and

ρn,θ′(x, θ) =
1

n
Eθ′(

n∑
i=1

log pθ(Xi, Yi|Xi−1)|Y0:n, Xn = x)

satisfy

∑
x∈χ

φn,θ′(x)ρn,θ′(x, θ) =
1

n
Eθ′(

n∑
i=1

log pθ(Xi, Yi|Xi−1)|Y0:n).

We also have

φ0,θ′(x) =
ν(x)gθ′(x, Y0)∑

x′∈χ ν(x′)gθ′(x′, Y0)
, ρ0,θ′(x) = 0

and

∀n ≥ 1, φn+1,θ′(x) =

∑
x′∈χ φn,θ′(x

′)qθ′(x
′, x)gθ′(x, Yn+1)∑

x′,x′′∈χ φn,θ′(x
′)qθ′(x′, x′′)gθ′(x′′, Yn+1)

and

ρn+1,θ′(x) =
∑
x′∈χ

(
1

n+ 1
log pθ(x, Yn+1|x′) + (1− 1

n+ 1
)ρn,θ′(x

′, θ)

)
Pθ(Xn = x′|Xn+1 = x, Y0:n)

where

Pθ(Xn = x′|Xn+1 = x, Y0:n) =
φn,θ′(x

′)qθ′(x
′, x)∑

x′′∈χ φn,θ′(x
′′)qθ′(x′′, x)

In [5] the author derives from this formula an online EM for HMM in the
same way he did for the i.i.d case. If the hidden data of the HMM takes its
values in a general measurable space χ (not denombrable) and if the HMM is
fully dominated, we can rewrite this formula by replacing the sums by integrals
and the probabilities by densities. Then we can derive an online EM for HMM
in a general measurable space. The E-step will be online:

φ̂0(x) =
ν(x)gθ̂0(x, Y0)∫

χ
ν(dx′)gθ̂0(x′, Y0)

, ρ̂0(x, θ) = 0

27

and

∀n ≥ 1, φ̂n+1(x) =

∫
χ
φ̂n(dx′)qθ̂n(x′, x)gθ̂n(x, Yn+1)∫

χ

∫
χ
φ̂n(dx′)qθ̂n(x′,dx′′)gθ̂n(x′′, Yn+1)

ρ̂n+1(x) =

∫
χ

(
1

n+ 1
log pθ(x, Yn+1|x′) + (1− 1

n+ 1
)ρ̂n(x′, θ)

)
π̂n(x,dx′)

where

π̂n(x, x′) =
φ̂n(x′)qθ̂n(x′, x)∫

χ
φ̂n(dx′′)qθ̂n(x′′, x)

and finally the M-step will be the maximization of

θ 7−→
∫
χ

φ̂n(dx)ρ̂n(x, θ)

If we try to use the approach of [6], we will try to approximate the expectactions∫
χ

(log pθ(x, Yn+1|x′)) π̂n(x, dx′) by ergodic means, for all x ∈ χ, whereas in the
i.i.d case there is also one expectation to approximate. Therefore it is impossible
to generalize directly the approach used by the authors of [6].

28

Chapter 5

Conclusion

The IBIS algorithm processes independant data of a distribution parametrized
by a random vector. Its aim is to sample from the posterior distribution of this
random vector. I tried different ways to rank the data in a pre-processing step
and measured the sampling efficiency for each method. For real observations,
the best method is to rank the data by quantiles. I also try to rank the data
by score of likelihood. As expected it deteriorates the quality of the sampling.
In dimension one, the ranking of data, when it’s possible, has a striking impact
on the result of the algorithm. For multi-dimensional data, particularly for two
dimensional data, I compared two methods of ranking. The first is the drawing
without replacement, that is to process the observations in the order they ap-
pear. The second is to reduce the dimension of the observations by performing
a principal component analysis and use the best method in dimension one, the
ranking by quantiles, on the best axis. I expected this one to be better than
the other but it is not clear on my simulations.

Then I worked on the generalization of an online EM algorithm for obser-
vations following a Hidden Markov model. I tried to generalize it to the case
where the hidden data in the HMM takes its values in a general measurable
space. Conditional expectations have to be computed. But for all points of this
general measured space we have one conditional expectation to compute so we
cannot approximate them by an ergodic mean in general.

We can expect the likelihood method of ranking to be worse in dimension
d > 1 than in dimension one. An other bad method of ranking in dimension
one could be to rank the data by increasing order. These methods show that
the ranking of the data does have an impact on the results. In high dimension
we can use a clustering method and make the batchs by drawing one element in
each cluster, in an attempt to mimic the quantiles ranking method in dimension
1. Clustering methods could be useful for mixture models. However with such
a method we do not control the number of observations by batch because the
number of observations by cluster is not the same in all clusters. Moreover, a
cluster could be empty at the end of the algorithm (for example in the k-means
method). Compared to the PCA method, a clustering could have better results
but clustering would be more computationally demanding.

The next step of this work is to try to perform the PCA method in very
high dimension and to compare it to the drawing without replacement. Maybe
one should change the move step for high dimensional to avoid the estimation

29

of the covariance matrix of the particles.

30

Bibliography

[1] N. Chopin. (2002), ”A sequential particle filter for static models”
Biometrika, 89:539-552

[2] L. M. Delyon, B. and E. Moulines (1999), ”Convergence of a stochastic
approximation version of the EM algorithm,” The Annals of Statistics, vol.
27, pp. 94–128

[3] Cappé, O., Moulines, E., and Rydèn, T. (2005), Inference in Hidden
Markov Models, Springer

[4] Cappé, O. and Moulines, E. (2009), ”On-line expectation-maximization
algorithm for latent data models,” J. Roy. Statist. Soc. B, 71(3):593–613

[5] Cappé, O. (2011), ”Online EM Algorithm for Hidden Markov Models,” J.
Comput. Graph. Statist, 20(3):728–749

[6] Maire, F.; Moulines, E.; Lefebvre, S. (2013), ”Online EM for Func-
tional Data ,” IEEE Transactions on Pattern Analysis and Machine Intel

[7] Glaeser, G. (1963), ”Fonctions composéès differentiables ,” Ann. Math.,
77, 193–209

[8] Girolami, M., Calderhead, B. (2011), ”Riemann manifold Langevin and
Hamiltonian Monte Carlo methods” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), , 73(2): 123–214

[9] Neal, R. M. (2010), ”MCMC using Hamiltonian dynamics” Handbook of
Markov Chain Monte Carlo

[10] Del Moral, P., Doucet, A., and Jasra, A. (2006), ”Sequential Monte
Carlo samplers” J. R. Statist. Soc. B, 68(3):411–436.

31

