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Abstract A new stochastic primal-dual algorithm for solving a composite
optimization problem is proposed. It is assumed that all the functions/matrix
used to define the optimization problem are given as statistical expectations.
These expectations are unknown but revealed across time through i.i.d real-
izations. This covers the case of convex optimization under stochastic linear
constraints. The proposed algorithm is proven to converge to a saddle point of
the Lagrangian function. In the framework of the monotone operator theory, the
convergence proof relies on recent results on the stochastic Forward Backward
algorithm involving random monotone operators.

1 Introduction

Many applications in machine learning, statistics or signal processing require
the solution of the following optimization problem [1,2,3]. Given two Euclidean
spaces X and V, solve

min
x∈X

F(x) + G(x) + H(Lx) (1)

where F,G and H are lower semicontinuous convex functions such that F(x) <∞
for every x and L belongs to the set L(X ,V) of X → V linear operators. Consider
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c ∈ V and H = ι{c}, where ιC is the indicator function of the set C, i.e, the
function equal to 0 on C and +∞ elsewhere. In this particular case, Problem (1)
boils down to the linearly constrained problem

min
x∈X

F(x) + G(x) s.t. Lx = c. (2)

In order to solve Problem (1), primal-dual methods generate a sequence of
primal estimates (xn)n∈N and a sequence of dual estimates (λn)n∈N jointly
converging to a saddle point of the Lagrangian function. As is well known, the
qualification condition

c ∈ ri (LdomG− domH)

where ri is the relative interior of a set, ensures the existence of such a point [4].
There is a rich literature on such algorithms which cannot be exhaustively
listed [1,2,3].

In this paper, it is assumed that the quantities that enter the minimization
problem are likely to be unavailable or difficult to compute numerically. More
precisely, it is assumed that the functions F and G are defined as expectations
of random functions. Given a probability space (Ξ,G , µ), consider two convex
normal integrands (see below) f : Ξ × X → R and g : Ξ × V → (−∞,+∞].
Then, we consider that F(x) = Eµ(f(·, x)) and G(x) = Eµ(g(·, x)). In addition,
let L be a measurable function from (Ξ,G , µ) to L(X ,V) (i.e a random matrix),
then it is assumed that L = EµL(·). Finally, the Fenchel conjugate H? of H
takes the form H?(λ) = Eµ(p(·, λ)), where p is a normal convex integrand.

In the particular case of Problem (2), let us assume that c = Eµ(c(·)) where
c(·) : Ξ → V is a random vector. Then, since H?(λ) = 〈λ, c〉, we simply put
p(·, λ) = 〈λ, c(·)〉.

In order to solve Problem (1), the observer is given the functions f , g, p,
and L, along with a sequence of independent and identically distributed (i.i.d.)
random variables (ξn) with the probability distribution µ. In this paper, a new
stochastic primal dual algorithm based on this data is proposed to solve this
problem.

The convergence proof for this algorithm relies on the monotone operator
theory. The algorithm is built around an instantiation of the stochastic Forward-
Backward algorithm involving random monotone operators that was introduced
in [5]. It is proven that the weighted means of the iterates of the algorithm,
where the weights are given by the step sizes of the algorithm, converges almost
surely to a saddle point of the Lagrangian function. To the authors knowledge,
the proposed algorithm is the first method that allows to solve Problem (1) in a
fully stochastic setting. Existing methods typically allow to handle subproblems
of Problem (1) in which some quantities used to define (1) are assumed to be
available or set equal to zero [6,7,8,9,10]. In particular, the new algorithm
generalizes the stochastic gradient algorithm (in the case where only F is non
zero), the stochastic proximal point algorithm [11,10,12] (only G is non zero),
and the stochastic proximal gradient algorithm [13,14] (only F+G is non zero).
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To our knowledge, the proposed algorithm is also one of the first methods
that allows to tackle stochastic linear constraints. The paper [8] studies stochas-
tic inequality constraints for optimization over a compact set and provide
regret bounds. Handling stochastic constraints online is suitable in various
fields of machine learning like Neyman-Pearson classification or online portfo-
lio optimization. For example, the Markowitz portfolio optimization problem
is an instance of Problem (2) where ξ is a random variable with values in
X , F(x) = Eξ(〈x, ξ〉2), G(x) = ι∆(x) where ∆ is the probability simplex,
L = Eξ(ξT ) and c is some real positive number. In this case, authors usually
assume that L = Eξ(ξT ) is fully known or estimated. The paper is organized
as follows. The next section is devoted to rigorously state the main problem
and the main algorithm. In section 3 the convergence proof of the algorithm is
given.

Some notations.The notation B(X ) will refer to the Borel σ-field of X . Both
the operator norm and the Euclidean norm will be denoted as ‖·‖. The distance
of a point x to a set S is denoted as dist(x, S). As mentioned above, we denote
as L(X ,V) the set of linear operators, identified with matrices, from X to V.
The set of proper, lower semicontinuous convex functions on X is Γ0(X ).

2 Problem description

Before entering our subject, we recall some definitions regarding set-valued
functions and integrals. Let (Ξ,G , µ) be a probability space where the σ-field
G is µ-complete. Given a Euclidean space X , let h : Ξ ⇒ X be a set valued
function such that h(s) is a closed set for each s ∈ Ξ. The function h is said
measurable if {s : h(s) ∩ S 6= ∅} ∈ G for any set S ∈ B(X ). An equivalent
definition for the mesurability of h requires that the domain dom(h) := {s ∈
Ξ : h(s) 6= ∅} of h belongs to G , and that there exists a sequence of measurable
functions ϕn : dom(h) → X such that h(s) = cl {ϕn(s)}n for all s ∈ dom(h),
where cl is the closure of a set. Such functions are called measurable selections of
h. Assume now that h is measurable and that µ(dom(h)) = 1. Given 1 ≤ p <∞,
let L p(µ) be the space of the G -measurable functions ϕ : Ξ → X such that∫
‖ϕ‖pdµ <∞, and let

Sp
h := {ϕ ∈ L p(µ) : ϕ(s) ∈ h(s) µ− almost everywhere (a.e.)} .

If S1
h 6= ∅, the function h is said integrable. The selection integral of h is the

set ∫
hdµ := cl

{∫
Ξ

ϕdµ : ϕ ∈ S1
h

}
. (3)

In all the remainder, given a single-valued or a set-valued function h, the
notation Eµh will refer to the integral of h with respect to µ. The meaning of
this integral will be clear from the context.

We now state our problem. A function h : Ξ × X → (−∞,∞] is said a
convex normal integrand if h(s, ·) is convex, and if the set-valued mapping
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s 7→ epih(s, ·) is closed-valued and measurable, where epi is the epigraph of a
function. Let f : Ξ×X → (−∞,∞] be a convex normal integrand, and assume
that

∫
|f(s, x)|µ(ds) < ∞ for all x ∈ X . Consider the convex function F(x)

defined on X as the Lebesgue integral F(x) = Eµf(·, x). Denoting as ∂f(s, x)
the subdifferential of f(s, ·) with respect to x, it is known that the set-valued
function ∂f(·, x) is measurable, S1

∂f(·,x) 6= ∅, and ∂F(x) = Eµ∂f(·, x) for each
x ∈ X , where the integral is the selection integral defined above [15,16].

Let g : Ξ × X → (−∞,∞] be another convex normal integrand, and let
G(x) = Eµg(·, x), where the integral is defined as the sum∫

{s : g(s,x)∈[0,∞)}
g(s, x)µ(ds) +

∫
{s : g(s,x)∈]−∞,0[}

g(s, x)µ(ds) + I(x) ,

and
I(x) =

{
+∞, if µ({s : g(s, x) =∞}) > 0,

0, otherwise ,
and where the convention (+∞) + (−∞) = +∞ is used. The function G is
a lower semi continuous convex function if G(x) > −∞ for all x, which we
assume. We shall also assume that G is proper. Note that this implies that
g(s, ·) ∈ Γ0(X ) for µ-almost all s. It is also known that ∂g(·, x) is measurable for
each x [15]. We assume that ∂G(x) = Eµ∂g(·, x), where the right hand member
is set to ∅ for the values of x for which S1

∂g(·,x) = ∅. Before proceeding in the
problem statement, it is useful to provide sufficient conditions under which this
interchange of the expectation and the subdifferentiation is possible. By [16],
this will be the case if the following conditions hold: i) the set-valued mapping
s 7→ cl dom g(s, ·) is constant µ-a.e., where dom g(s, ·) is the domain of g(s, ·),
ii) G(x) <∞ whenever x ∈ dom g(s, ·) µ-a.e., iii) there exists x0 ∈ X at which
G is finite and continuous. Another case where this interchange is permitted
is the following. Let m be a positive integer, and let C1, . . . Cm be a collection
of closed and convex subsets of X . Let C = ∩mi=kCk 6= ∅, and assume that the
normal cone NC(x) of C at x satisfies the identity NC(x) =

∑m
k=1NCk(x) for

each x ∈ X , where the summation is the usual set summation. As is well known,
this identity holds true under a qualification condition of the type ∩mk=1 ri Ck 6= ∅
(see also [17] for other conditions). Now, assume that Ξ = {1, . . . ,m} and
that µ is an arbitrary probability measure putting a positive weight on each
{k} ⊂ Ξ. Let g(s, x) be the indicator function

g(s, x) = ιCs(x) for (s, x) ∈ Ξ ×X . (4)

Then it is obvious that g is a convex normal integrand, G = ιC , and ∂G(x) =
Eµ∂g(·, x). We can also combine these two types of conditions: let (Σ,T , ν) be
a probability space, where T is ν-complete, and let h : Σ ×X → (−∞,∞] be
a convex normal integrand satisfying the conditions i)–iii) above. Consider the
closed and convex sets C1, . . . , Cm introduced above, and let α be a probability
measure on the set {0, . . . ,m} such that α({k}) > 0 for each k ∈ {0, . . . ,m}.
Now, set Ξ = Σ × {0, . . . ,m}, µ = ν ⊗ α, and define g : Ξ ×X → (−∞,∞] as

g(s, x) =

{
α(0)−1h(u, x) if k = 0,
ιCk(x) otherwise,
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where s = (u, k) ∈ Σ × {0, . . . ,m}. Then it is clear that

G(x) =
1

α(0)

∫
Σ

h(u, x)ν(du) + ιC(x) ,

and

∂G(x) = Eµ∂g(·, x) =
1

α(0)
Eν∂h(·, x) +

m∑
k=1

NCk(x) .

To proceed with our problem statement, we introduce another convex
normal integrand p : Ξ ×Z → (−∞,∞] and assume that the function p has
verbatim the same properties as g, after replacing the space X with V . We also
denote H the Fenchel conjugate of P(λ) = Eµp(·, λ), so that H?(λ) = Eµp(·, λ).

Finally, let L : Ξ → L(X ,V) be an operator-valued measurable function.
Let us assume that ‖L‖ is µ-integrable, and let us introduce the Lebesgue
integral L = EµL.

Having introduced these functions, our purpose is to find a solution x ∈ X
of Problem (1), where the set of such points is assumed non empty. To solve
this problem, the observer is given the functions f, g, p, L, and a sequence of
i.i.d random variables (ξn)n∈N from a probability space (Ω,F ,P) to (Ξ,G )
with the probability distribution µ.

Denote as proxh(x) = arg miny∈X h(y)+‖y−x‖2/2 the Moreau’s proximity
operator of a function h ∈ Γ0(X ). We also denote as ∂0h(x) the least norm
element of the set ∂h(x), which is known to exist and to be unique [4]. Similarly,
∂0f(s, x) will refer to the least norm element of ∂f(s, x) which was introduced
above. We shall also denote as ‹∇f(s, x) a measurable subgradient of f(s, ·)
at x. More precisely, ‹∇f : (Ξ ×X ,G ⊗B(X ))→ (X ,B(X )) is a measurable
function such that for each x ∈ X , ‹∇f(·, x) ∈ S1

∂f(·,x) (recall that this set is

non empty). A possible choice for ‹∇f(s, x) is ∂0f(s, x) (see [5, §2.3 and §3.1]
for the measurability issues). Turning back to Problem (1), our purpose will be
to find a saddle point of the Lagrangian (x, λ) 7→ F(x) +G(x)−H?(λ) + 〈Lx, λ〉.
Denoting as S ⊂ X × V the set of these saddle points, an element (x, λ) of S
is characterized by the inclusions{

0 ∈ ∂F(x) + ∂G(x) +LTλ,
0 = −Lx +∂H?(λ) .

(5)

Consider a sequence of positive weights (γn)n∈N. The algorithm proposed
here consists in the following iterations applied to the random vector (xn, λn) ∈
X × V.

We also give the instance of the main algorithm that allows to solve
Problem (2) (which is a instance of Problem (1)).

The convergence of Algorithm 1 is stated by the following theorem.

Theorem 1 Consider the Problem (1), and let the following assumptions hold
true.

1. The step size sequence satisfies (γn) ∈ `2 \ `1, and γn+1/γn → 1 as n→∞.
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Algorithm 1 The Main Algorithm : Solving Problem (1)

xn+1 = proxγn+1g(ξn+1,·)

(
xn − γn+1(∇̃f(ξn+1, xn) + L(ξn+1)

Tλn)
)
,

λn+1 = proxγn+1p(ξn+1,·) (λn + γn+1L(ξn+1)xn) .

Algorithm 2 Stochastic Linear Constraints : Solving Problem (2)

xn+1 = proxγn+1g(ξn+1,·)

(
xn − γn+1(∇̃f(ξn+1, xn) + L(ξn+1)

Tλn)
)
,

λn+1 = λn + γn+1 (L(ξn+1)xn − c(ξn+1)) .

2. There exists an integer m ≥ 2 that satisfies the following conditions:
– The function L is in L 2m(µ).
– There exists a point (x?, λ?) ∈ S, and three functions ϕf ∈ S2m

∂f(·,x?)
,

ϕg ∈ S2m
∂g(·,x?)

, and ϕp ∈ S2m
∂p(·,λ?)

which

Eµϕf + Eµϕg + LTλ? = 0, and − Lx? + Eµϕp = 0. (6)

The last assumption is verified for m = 1 and for each point (x?, λ?) ∈ S.
3. For any compact set K of dom ∂G, there exist ε ∈ (0, 1] and x0 ∈ dom ∂G

such that

sup
x∈K

E‖∂0g(·, x)‖1+ε < +∞, and E‖∂0g(·, x0)‖1+1/ε < +∞.

4. Writing D∂g(s) = dom ∂g(s, ·), there exists C > 0 such that for all x ∈ X ,

Eµ dist(x,D∂g(·))2 ≥ C dist(x, dom ∂G)2.

5. There exists C > 0 such that for any x ∈ X and any γ > 0,∫
‖ proxγg(s,·)(x)−Πg(s, x)‖4µ(ds) ≤ Cγ4(1 + ‖x‖2m),

where Πg(s, ·) is the projection operator onto cl(dom ∂g(s, ·)), and where m
is the integer provided by Assumption 2.

Assumptions similar to 3–5 are made on the function p and P.

6. There exists a measurable Ξ → R+ function β such that β2m is µ-integrable,
where m is the integer provided by Assumption 2, and such that for all
x ∈ X ,

‖‹∇f(s, x)‖ ≤ β(s)(1 + ‖x‖).

Moreover, there exists a constant C > 0 such that Eµ‖‹∇f(·, x)‖4 ≤ C(1 +
‖x‖2m).
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Consider the sequence of iterates (xn, λn) produced by the algorithm (1),
and define the averaged estimates

x̄n =

∑n
k=1 γkxk∑n
k=1 γk

, and λ̄n =

∑n
k=1 γkλk∑n
k=1 γk

.

Then, the sequence (xn, λn) is bounded in L 2m(Ω) and the sequence (x̄n, λ̄n)
converges almost surely (a.s.) to a random variable (X,Λ) supported by S.

Let us now discuss our assumptions. Assumption 1 is standard in the
decreasing step case. Assumption 2 is a moment assumption that is generally
easy to check. Note that this assumption requires the set of saddle points S to
be non empty. Notice the relation between Equations (6) and the two inclusions
in (5). Focusing on the first inclusion, there exist a ∈ ∂F (x?) = Eµ∂f(·, x?)
and b ∈ ∂G(x?) = Eµ∂g(·, x?) such that 0 = a+ b+ LTλ?. Then, Assumption 2
states that there are two measurable selections ϕf and ϕg of ∂f(·, x?) and
∂g(·, x?) respectively which are both in L 2m(µ) and which satisfy a = Eµϕf
and b = Eµϕg. Not also that the larger is m, and the weaker is Assumption 5.

Assumption 3 is relatively weak and easy to check. This assumption on the
functions g and p is much weaker than Assumption 6, which assumes that the
growth of ‹∇f(s, ·) is not faster than linear. This is due to the fact that g and
p enter the algorithm (1) through the proximity operator while the function
f is used explicitly in this algorithm (through its (sub)gradient). This use of
the functions f is reminiscent of the well-known Robbins-Monro algorithm,
where a linear growth is needed to ensure the algorithm stability. Note that
Assumption 6 is satisfied under the more restrictive assumption that ∇f(s, ·)
is L-Lipschitz continuous without any bounded gradient assumption.

Assumption 4 is quite weak, and is studied e.g in [18]. This assumption is
easy to illustrate in the case where g(s, x) = ιCs(x) as in (4). Following [17],
we say that the subsets (C1, . . . , Cm) are linearly regular if there exists C > 0
such that for every x,

max
i=1...m

dist(x, Ci) ≥ C dist(x, C).

Sufficient conditions for a collection of sets to satisfy the above condition can
be found in [17] and the references therein. Note that this condition implies
that NC(x) =

∑m
i=1NCi(x). Let us finally discuss Assumption 5. As γ → 0, it is

known that proxγg(s,·)(x) converges to Πg(s, x) for every (s, x). Assumption 5
provides a control on the convergence rate. This assumption holds under the
sufficient condition that for µ-almost every s and for every x ∈ dom ∂g(s, ·),

‖∂g0(s, x)‖ ≤ β(s)(1 + ‖x‖m/2) ,

where β is a positive random variable with a finite fourth moment [12].
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3 Proof of Theorem 1

The proof of Theorem 1 employs the monotone operator theory. We begin by
recalling some basic facts on monotone operators. All the results below can be
found in [19,4] without further mention.

A set-valued mapping A : X ⇒ X on the Euclidean space X will be called
herein an operator. An operator with singleton values is identified with a
function. As above, the domain of A is dom(A) = {x ∈ X : A(x) 6= ∅}. The
graph of A is gr(A) = {(x, y) ∈ X × X : y ∈ A(x)}. The operator A is said
monotone if ∀(x, y), (x′, y′) ∈ gr(A), 〈y − y′, x− x′〉 ≥ 0. A monotone operator
with non empty domain is said maximal if gr(A) is a maximal element for the
inclusion ordering in the family of the monotone operator graphs. Let I be the
identity operator, and let A−1 be the inverse of A, which is defined by the fact
that (x, y) ∈ gr(A−1)⇔ (y, x) ∈ gr(A). An operator A belongs to the set M (X )
of the maximal monotone operators on X if and only if for each γ > 0, the
so-called resolvent (I+γA)−1 is a contraction defined on the whole space X . In
particular, it is single-valued. A typical element of M (X ) is the subdifferential
∂G of a function G ∈ Γ0(X ). In this case, the resolvent (I + γ∂G)−1 for γ > 0
coincides with the proximity operator proxγG. A skew-symmetric element of
L(X ,X ) can also be checked to be an element of M (X ).

The set of zeros of an operator A on X is the set Z(A) = {x ∈ X : 0 ∈ A(x)}.
The sum of two operators A and B is the operator A + B whose image at x is
the set sum of A(x) and B(x). Given two operators A,B ∈M (X ), where B is
single-valued with domain X , the so-called Forward-Backward algorithm is an
iterative algorithm for finding a point in Z(A + B). It reads

xn+1 = (I + γA)−1(xn − γB(xn))

where γ is a positive step.
In the sequel, we shall be interested by random elements of M (X ) as

used in [12,5,14]. Consider a function A : Ξ →M (X ), where (Ξ,G , µ) is the
probability space introduced at the beginning of Section 2. By the maximality
of A(s), the graph gr(A(s)) is known to be a closed subset of X × X . By
saying that A(·) is a M (X )-valued random variable, we mean that the function
s 7→ gr(A(s)) is measurable according to the definition of Section 2. When
A(s) = ∂h(s, ·), where h : Ξ × X → (−∞,∞] is a convex normal integrand
such as h(s, ·) is proper µ-a.e., A is a random element of M (X ). Finally, when
A(s) is a skew-symmetric element of L(X ,X ) which is measurable in the usual
sense (as a Ξ → L(X ,X ) function), then it is also a random element of M (X ).

We now enter the proof of Theorem 1. Let us set Y = X × V, and endow
this Euclidean space with the standard scalar product. By writing (x, λ) ∈ Y,
it will be understood that x ∈ X and λ ∈ V.

For each s ∈ Ξ, define the set-valued operator A(s) on Y as

A(s, (x, λ)) =

[
∂g(s, x)
∂p(s, λ)

]
,
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where A(s, (x, λ)) is the image of (x, λ) by A(s). Fixing s ∈ Ξ, the operator
A(s, (x, λ)) coincides with the subdifferential of the convex normal integrand
g(s, x) +p(s, λ) with respect to (x, λ). Thus, the map s 7→ A(s) is a measurable
Ξ →M (Y) function. Let us also define the operator B(s) as

B(s, (x, λ)) =

[
∂f(s, x) +L(s)Tλ
−L(s)x

]
.

We can write B(s) = B1(s) +B2(s), where

B1(s, (x, λ)) =

[
∂f(s, x)

0

]
, B2(s) =

[
0 L(s)T

−L(s) 0

]
(B2(s) is a linear skew-symmetric operator written in a matrix form in Y).
For each s ∈ Ξ, both these operators belong to M (Y), and domB2(s) = Y.
Thus, B(s) ∈ M (Y) by [4, Cor. 24.4]. Moreover, since both B1 and B2 are
measurable, B is a M (Y)-valued random variable.

Now, from the assumptions on the functions f, g, and p, we see that the
operators A = EµA and B = EµB, where Eµ is the selection integral (3), are
written as

A(x, λ) =

[
∂G(x)
∂H?(λ)

]
, and B(x, λ) =

[
∂F(x) +LTλ
−Lx

]
.

For the same reasons as for the operators A(s) and B(s), it holds that A, B,
and A + B belong to M (Y). Moreover, recalling the system of inclusions (5),
we also obtain that S = Z(A + B).

Defining the function

b(s, (x, λ)) =

[‹∇f(s, x) +L(s)Tλ
−L(s)x

]
(obviously, b(s, (x, λ)) ∈ B(s, (x, λ)) µ-a.e.), let us consider the following version
of the Forward-Backward algorithm

(xn+1, λn+1) = (I + γn+1A(ξn+1, ·))−1 ((xn, λn)− γn+1b(ξn+1, (xn, λn))) .

On the one hand, one can easily check that this is exactly Algorithm (1). On
the other hand, this algorithm is an instance of the random Forward-Backward
algorithm studied in [5]. By checking the assumptions of Theorem 1 one by
one, one sees that the assumptions of [5, Th. 3.1 and Cor. 3.1] are verified.
Theorem 1 follows.

Remark 1 The convergence stated by Theorem 1 concerns the averaged se-
quence (x̄n, λ̄n). One can ask whether the sequence (xn, λn) itself converges
to S. A counterexample is provided by the particular case X = V = R,
f = g = p = 0, and L = 1 (proof omitted). A pointwise convergence would
have been possible if A + B were so-called demipositive [5]. Note that in the

previous counterexample, A + B =

[
0 1
−1 0

]
is not demipositive.
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Remark 2 Constant step Forward-Backward algorithms usually require the
operator B to be so-called cocoercive. This property is not needed if a decreasing
step size is used [20,5].
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