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Goal

Sample from a target distribution µ?(x) ∝
exp(−U(x)) where U convex.
The proposed method is a generalization of the
Langevin algorithm to potentials U expressed
as the sum of one stochastic smooth term and
multiple stochastic nonsmooth terms.
We provide nonasymptotic rates for this
method.

Background

KL divergence.
If µ� π, then

KL(µ|π) :=
∫

log(dµ
dπ

(x))dµ(x)

and KL(µ|π) := +∞ else.

Wasserstein distance.
Let µ, ν probability measures with finite second mo-
ments.
W 2(ν, µ) := inf{E‖Y −X‖2, X ∼ µ, Y ∼ ν}.

Langevin algorithm

If U is smooth, Langevin algorithm:
xk+1 = xk − γ∇U(xk) +

√
2γW k, (1)

where γ > 0 and (W k)k≥0 is a sequence of i.i.d.
standard Gaussian random variables.
Typical nonasymptotic result:
KL(µx̂k|µ?) = O(1/

√
k).

Another look at Langevin
algorithm

The target µ? is the minimizer of F : µ 7→ KL(µ|µ?)
and Langevin algorithm can be seen as an (inexact)
gradient descent applied to F ([1]).

Mathematical Problem

Sample from µ?(x) ∝ exp(−U(x)), where U(x) := F (x) +
n∑
i=1
Gi(x), (2)

where F : Rd → R is a smooth convex function and G1, . . . , Gn : Rd → R are (possibly nonsmooth) convex
functions. Further, F and G written as expectations

F (x) = Eξ(f (x, ξ)), and Gi(x) = Eξ(gi(x, ξ)). (3)

Stochastic Proximal Langevin Algorithm

Stochastic Proximal Langevin Algorithm (SPLA):
zk = xk − γ∇f (xk, ξk)
yk0 = zk +

√
2γW k

yki = proxγgi(·,ξk)(y
k
i−1) for i = 1, . . . , n

xk+1 = ykn, (4)
where ξk i.i.d. copies of ξ.
Important instance: U(x) = E(g(x, ξ)), g(·, ξ) : Rd→ R nonsmooth,

xk+1 = proxγg(·,ξk)(xk) +
√

2γW k

Results

Table 1: Obtained complexity results

F Rate Nonasymptotic result

convex KL(µx̂k | µ?) ≤ 1
2γ(k+1)W

2(µx0, µ?) +O(γ) KL(µx̂k|µ?) = O(1/
√
k)

α-strongly convex W 2(µxk, µ?) ≤ (1− γα)kW 2(µx0, µ?) +O
(
γ
α

)
W 2(µxk, µ?) = O(1/k)

α-strongly convex KL(µx̃k | µ?) ≤ α(1− γα)k+1W 2(µx0, µ?) +O(γ) KL(µx̃k|µ?) = O(1/k)

Approach

Following [1], we prove that the iterates shadow a discretized gradient flow of F :
2γ

{
F(µyk0)−F(µ?)

}
≤ (1− γα)W 2(µxk, µ?)−W 2(µxk+1, µ?) + γ2C. (5)

The results follows from F(µ)−F(µ?) = KL(µ|µ?).

Bayesian Trend Filtering on
Graphs

Graph G = (V,E). Total variation over G: for all
x ∈ RV ,

TV(x,G) := ∑
i,j∈V,{i,j}∈E

|x(i)− x(j)|,

Target ([2]):
µ?(x) ∝ exp

(
− 1

2σ2‖x− y‖2+λTV(x,G)
)

where σ, λ > 0.

Figure 1: The functional F = E + H as a function of CPU
time over the Facebook graph (y ∼ N(0, IV )).
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