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Abstract—This paper introduces a constant step size adaptive
algorithm for distributed optimization on a graph. The algorithm
is of diffusion-adaptation type and is asynchronous: at every iter-
ation, some randomly selected nodes compute some local variable
by means of a proximity operator involving a locally observed
random variable, and share these variable with neighbors. The
algorithm is built upon a stochastic version of the Douglas-
Rachford algorithm. A practical application to target localization
using measurements from multistatic continuous active sonar
systems is investigated at length.

Index Terms—Adaptive algorithms, stochastic approximation,
distributed optimization, proximal operator, target localization.

I. INTRODUCTION

A broadly investigated subject in optimization and signal
processing consists in solving the problem minx∈X E(f(x, θ))
where X is an Euclidean space, θ is a random variable (r.v.)
and f( . , θ) is some random function. We consider the case
where the expectation E cannot be computed, but is revealed
by means of i.i.d. copies of θ. Iterative algorithms such as
the standard stochastic gradient algorithm or the stochastic
proximal point algorithm [1] can be used to track a minimizer.
In adaptive signal processing, the step size of the algorithm
is constant in order to maintain the tracking abilities of the
algorithm. In this paper, we propose a distributed stochastic
algorithm over graphs with constant step size. Consider an
undirected and connected graph G = (V,E) where V :=
{1, . . . , N} is the set of vertices and E is the set of edges.
The problem of interest has the form:

min
x∈XV

∑
v∈V

E(fv(xv, θv)) +
∑

{v,w}∈E, v<w

g{v,w}(xv,xw) , (1)

where for every v ∈ V, θv is random variable on some
probability space into some measurable space Θv , fv( . , θv)
is a random function in the set Γ0(X ) of convex, proper and
lower semicontinuous functions on X → (−∞,+∞] and
ge (e ∈ E) are functions in Γ0(X × X ). The functions fv
represent some private cost, known only locally at the node
v ∈ V. The regularizers ge (e ∈ E) ensure the coupling
between the variables (xv : v ∈ V). A special case of
Problem (1) is given when every function ge is defined by
ge(x,y) = ιC(x,y) where ιC is the indicator function of the
set C := {(x,x) : x ∈ X}, equal to zero on that set and to
+∞ elsewhere. In this case, using the fact that the graph is
connected, the sum in the second term of (1) is equal to zero
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if x1 = · · · = xN and to +∞ otherwise. Hence, Problem (1)
is equivalent to the consensus problem:

min
x∈XV

∑
v∈V

E(fv(xv, θv)) s.t. x1 = · · · = xN . (2)

In other words, all nodes are seeking to find a common min-
imizer of the aggregate cost

∑
v∈V E(fv( . , θv)). Compared

to (2), the generic formulation (1) is useful to cover the case
of total variation regularization (g{v,w}(x,y) = ‖x − y‖)
of Laplacian regularization (g{v,w}(x,y) = ‖x − y‖2). It is
also useful in practical applications such as distributed target
localization, which we will consider and discuss at length in
this paper as the main motivation for our algorithm.

In this paper, we propose an asynchronous distributed algo-
rithm to solve the problem (1) and its special case (2). Similar
distributed algorithms are proposed in [2,3]. Our algorithm is
asynchronous in the sense that, at every iteration, only a certain
number of (randomly chosen) nodes update and exchange
their variables, other nodes of the network being idle. We
derive our algorithm as a special instance of an algorithm
recently derived in [4], which is a stochastic version of the
celebrated Douglas-Rachford algorithm [5] used to minimize
the sum of two functions. In its stochastic counterpart [4],
the latter are replaced by random functions observed at every
iteration of the algorithm. The distributed problem (1) can be
seen as a special case of the problem solved the algorithm
of [4]. The nature of the randomness is twofold. First, the
innovation: every node locally observes some random real-
ization of every function fv( . , θv) at each step. Second, the
asynchronous communications: only certain nodes chosen at
random communicate at a given time. In order to incorporate
asynchronous communications in the algorithm, the idea is to
reformulate the second sum in (1) as an expectation over the
(random) active edges and then to apply the adaptive Douglas-
Rachford algorithm. Finally, we apply our algorithm to the
problem of adaptive and distributed target localization.

II. MAIN ALGORITHM

A. Adaptive Douglas Rachford Algorithm

The notation prox represents the proximity operator, defined
for every h ∈ Γ0(X ) and every x ∈ X by

proxγ,h(x) = arg min
y∈X

h(y) +
‖y − x‖2

2γ
.

The positive parameter γ > 0 is regularization parameter
that controls the approximation. Let ξ be a random variable
defined on some probability space (Ω,F ,P) into an arbitrary

108



measurable space (Ξ,G). We say that a mapping f : X ×Ξ→
(−∞,+∞] is a normal convex integrand if f( . , s) ∈ Γ0(X )
for every s ∈ Ξ and if f(x, . ) is measurable for every x.
Consider the problem

min
x∈X

E(f(x, ξ)) + E(g(x, ξ)) (3)

where f , g are normal convex integrands. Let (ξ(k) : k ∈ N)
a sequence of i.i.d. copies of ξ. Consider the algorithm of [4]

xk+1 = proxγ,f( . ,ξ(k+1))(u
(k))

zk+1 = proxγ,g( . ,ξ(k+1))(2x
(k+1) − u(k))

uk+1 = u(k) + z(k+1) − x(k+1) ,

where γ > 0 is the step size of the algorithm. The algo-
rithm is an immediate extension of the Douglas-Rachford
algorithm [5], where deterministic functions are replaced by
random realizations. The convergence analysis of the algo-
rithm is provided in [4] under the hypothesis of a constant step
size. Under some hypotheses, it is proved that the algorithm
is stable (in a sense made clear in [4]) and that it converges
to the set of solutions to (3) in the doubly asymptotic regime
where k →∞ and γ → 0 (see again [4] for details).

B. Application to the Asynchronous Consensus Problem (2)

To simplify the presentation, we first start by describing our
algorithm in the special case of the consensus problem (2).
Define θ = (θv : v ∈ V) and let (θ(k) : k ∈ N) be
a sequence of i.i.d. copies of the r.v. θ. We assume the
following asynchronous communication model. At every
iteration k, a random node v(k) is chosen according to the
uniform distribution on V. This node observes the r.v. θ(k)v

and updates some local variable. Next, during some commu-
nication step, a node w(k) is chosen uniformly amongst the
neighbors of node v(k), and the two nodes v(k), w(k) exchange
some local variables. Other nodes are idle. The sequence
((v(k), w(k)) : k ∈ N) is supposed i.i.d. and independent
from the sequence (θ(k) : k ∈ N). As the graph is connected,
Problem (2) is equivalent to

min
x∈XV

E
(
fv(1)(xv(1) , θ

(1)

v(1)
)
)

+ E (ιC(xv(1) ,xw(1))) . (4)

The application of adaptive Douglas Rachford algorithm to (4)
yields following iterations:

At iteration k + 1, denote for simplicity v = vk+1,
w = wk+1 and set fk+1

v := fv( . , θ
(k+1)
v ):

x(k+1)
v = prox

γ,f
(k+1)
v

(u(k)
v )

u(k+1)
v =

1

2
(u(k+1)

v + u(k+1)
w )

u(k+1)
w = x(k+1)

v +
1

2
(u(k+1)

w − u(k+1)
v ) ,

and for every ` /∈ {v, w}, u(k+1)
` = u

(k)
v .

C. Generalization

We generalize the above algorithm to the following case:
• We address the general problem (1);
• We use a more general asynchronous communication

model. Specifically, we distinguish between computing
nodes and communicating nodes. Several random nodes

v (the computing nodes) observe their local r.v. θ(k)v

at iteration k and compute the output of a proximity
operator. These nodes are referred to as the computing
nodes. In addition, a certain set of nodes (not necessarily
restricted to a single edge) participate to the exchange
of variables at iteration k. These nodes are referred to
as the communicating nodes. As in the previous para-
graph, there might be an overlap between computing and
communicating nodes, but it is not mandatory: we make
no such assumption here. This way, our general model
encompasses a large number of scenarios. We refer to
Section III for an example.

Let us be formal. We introduce a random variable ν : Ω→ 2V

taking its values in the set of subsets of V. The elements
of ν are the computing nodes. We also introduce a random
variable ε : Ω → 2E taking its values in the set of subsets
of E. Elements of ε are the active edges, and we identify
the communicating nodes with all nodes belonging to at
least one active edge. We define for every v ∈ V, e ∈ E,
the probabilities pv := P(v ∈ ν) and qe := P(e ∈ ε)
and we assume that the latter are positive. Define the r.v.
ξ := (θ, ν, ε) on the space Ξ := Θ × 2V × 2E where
Θ := Θ1 × · · · × ΘN . Introduce the maps f, g : XV ×
Ξ → (−∞,+∞] s.t. f(x, ξ) :=

∑
v∈ν p

−1
v fv(xv, θ) and

g(x, ξ) :=
∑

v<w
{v,w}∈ε

q−1{v,w} g{v,w}(xv,xw) , for every x ∈

X V . Define F (x) := E(f(x, ξ)) and G(x) := E(g(x, ξ)).
Whenever θ and ν are independent, it holds that
F (x) =

∑
v∈V

E(fv(xv, θ)), G(x) =
∑
v<w
{v,w}∈E

g{v,w}(xv,xw) .

We apply the adaptive Douglas-Rachford algorithm with the
sequence ξ(k) := (θ(k), ν(k), ε(k)). We define V(ε) := {v ∈
V : ∃w ∈ V, {v, w} ∈ ε}. The algorithm writes:

Every computing node v ∈ ν(k+1) generates
x(k+1)
v = proxγ,p−1

v ,fv( . ,θ(k+1))(u
(k)
v ) (5)

whereas other nodes v /∈ ν(k+1) simply set x(k+1)
v = u

(k)
v .

The set of communicating nodes V(ε(k+1)) jointly compute

(z(k+1)
v : v ∈ V(ε(k+1))) =

arg min
z∈XV(ε(k+1))

∑
v<w
{v,w}∈ε

q−1{v,w} g{v,w}(zv, zw)

+
1

2γ

∑
v∈V(ε(k+1))

‖zv − 2x(k+1)
v + u(k)

v ‖2 , (6)

whereas other nodes v /∈ V(ε(k+1)) simply set z(k+1)
v =

2x
(k+1)
v − u(k)

v = u
(k)
v . Finally, all nodes v ∈ V set

u(k+1)
v = u(k)

v + z(k+1)
v − x(k+1)

v (7)
which boils down to u

(k+1)
v = x

(k)
v = u

(k)
v if v neither

belongs to ν(k+1) nor to V(ε(k+1)).

The above algorithm boils down to the adaptive algorithm
of Section II-B in the case where ν(k) = {v(k)}, ε(k) =
{{v(k), w(k)}} and every ge = ιC for all e ∈ E. The proof
of the following theorem is omitted. It consists in checking
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the assumptions of the main theorem in [4]. We denote by
dom(h) the domain of a function h. If A is a set, let d( . ,A)
be the distance function to A. Set d(x) denote the distance
of point x ∈ XV to the intersection of the sets dom(ge) w.r.t.
e ∈ E.

Assumption II.1. Assume the following for every v ∈ V, e ∈
E. The maps fv(·, θ) and ge are w.p.1 convex. There exists
L > 0 such that fv(·, θ) is w.p.1 differentiable with L-Lipschitz
gradient. Moreover, pv > 0, qe > 0.

Assumption II.2. There exists x̄ ∈ XV s.t. ∇fv(x̄v, θ) is
square-norm integrable for every v ∈ V. There exists α > 0
s.t.
∑
e∈E d(x,dom(ge)) ≥ αd(x) for all x ∈ XV.

We denote by hγ : x 7→ minx∈X h(y) + ‖y − x‖2/(2γ)
the Moreau’s envelope of a mapping h ∈ Γ0(X ). We denote
by Πe(x) the projection of a point x ∈ XV onto the closure
dom(ge). We denote by D{v,w}(x) the least norm element
in ∂g{v,w}(xv,xw). Define S := arg minF + G the set of
solutions. As the algorithm is dependent on the step size γ,
we write in the sequel u(k),γ instead of u(k).
Theorem II.1. Let Assumptions II.1-II.2 hold true. Assume
that θ and ν be independent. Assume that F +G is coercive
and that for every e ∈ E, De is bounded over compact sets.
Assume that there exists C > 0 s.t. for all x,∑

v∈V

E

(
‖∇fγv (xv, θv)‖+

1

γ

∑
e∈E

‖proxγge(x)−Πe(x)‖

)

≤ C

1 + |
∑
v∈V

E(fγv (xv, θv)) +
∑

{v,w}∈E

E(gγ{v,w}(xv,xw))|

 .

(8)
If S 6= ∅, then for all δ > 0,

lim sup
n→∞

1

n+ 1

n∑
k=0

P
(
d(u(k),γ ,S) > δ

)
−−−→
γ→0

0 .

Note that in the special case of Section II-B, the mappings
ge (e ∈ E) coincide with indicator functions, and the con-
dition (8) simplifies to a condition on the functions fv only,
which is mild and easily verifiable.

III. TARGET LOCALIZATION

We consider an application of underwater target localization
using the range and direction-of-arrival (DOA) measurements
obtained from network of sensors in multistatic continuous
active sonar system (MCAS). The target localization problem
is based upon least squares estimate, which is indeed a
nonconvex optimization, thus, rather difficult to find global
solution. Despite such a difficulty, efficient methods for exact
(global) solutions are proposed in [6,7]. Based up on their
idea, we apply the proposed adaptive distributed algorithm
described in Section II-B for tracking a slowly moving target.

A. System Description and Problem Formulation

MCAS system consists multiple transmitter and receiver
units spatially distributed over a region-of-interest (ROI) [7,8].
MCAS system involves transmission and reception of multiple
continuous probing sequences [9], thus, each receiver can
operate asynchronously. Here, we considered two-dimensional

target

mth transmitter nth receiver

Fig. 1. A generic setting of active sonar [7].

(2D) space, but it can be easily extended to 3D space. Let
the MCAS system be equipped with stationary M trans-
mitters and N receivers, and a target moving in the ROI.
Let tm = [xtm, y

t
m]T, rn = [xrn, y

r
n]T, and θ = [xθ, yθ]T

denote the Cartesian coordinate of the mth transmitter, nth
receiver, and the target, respectively, for m = 1, 2, · · · ,M ,
and n = 1, 2, · · · , N . A generic scenario of MCAS system
is shown in the Fig. 1 with a mth transmitter, a nth receiver,
and a moving target; see [7] for detailed description about
the placement scheme of the transmitters and receivers in
MCAS system. A signal transmitted by the mth transmitter
echoes back to the nth receiver after propagating the distance:
ρm,n = ‖θ− tm‖+ ‖θ− rn‖. Assume that we have a stream
of range {ρ(k)m,n} and DOA measurements {ϕ(k)

n } sampled at
the instances k ∈ N that are corrupted by white Gaussian
noise. Let receivers be equipped with processing units that
form nodes of undirected and connected graph G. At a certain
instant k, target position estimation [7] is written as:

arg min
θ

N∑
v=1

‖B(k)
v

[
θ

‖θ − rv‖

]
− g(k)v ‖2 (9)

where

B(k)
v =


2(t1 − rv)T −2ρ

(k)
1,v

...
...

2(tM − rv)T −2ρ
(k)
M,v

ωv 0 −ωv cos(ϕ
(k)
v )

0 ωv −ωv sin(ϕ
(k)
v )

 ∈ R(M+2)×3,

g(k)v =

[
‖t1‖2 − (ρ

(k)
1,v)2 − ‖rv‖2, · · ·

‖tM‖2 − (ρ
(k)
M,v)

2 − ‖rv‖2, ωvxrv, ωvyrv
]T
∈ R(M+2)

and ωv > 0 are weights to balance between the coefficients
of range and DOA measurements. As in [6], we assume that
B

(k)
n have full column rank so that B(k)

n

T
B

(k)
n is nonsingular.

One can notice that the problem (9) is non-convex problem in

θ but convex in the vectors θ̃v =
[
θT, ‖θ − rv‖

]T
∈ R3

for v = 1, 2, · · · , N . Thus, as suggested in [7], we use
θ̃v to relax the problem (9), and formulate it as distributed
convex optimization problem. Let X = {θ̃1, θ̃2, · · · , θ̃N}
and C be set of vectors (θ̃1, θ̃2, · · · , θ̃N ) ∈ X satisfying
the consensus condition: ∀(n,m) ∈ {1, 2, · · · , N}2 θ̃n(`) =
θ̃m(`), for ` = 1, 2, where θ(`) represents `th element of
the vector. Target position estimation from streams of noisy
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measurements at N different receiver nodes is an instance of
the problem (2), which is written as:

arg min
θ̃∈XV

∑
n∈V

E(fv(θ̃v, θ)) s.t. (θ̃1, θ̃2, · · · , θ̃N ) ∈ C (10)

where fv(θ̃v, θ(k+1)) = 1
2‖B

(k+1)
v θ̃v − g(k+1)

v ‖2.

B. Solution

We solve the problem (10) by the distributed adaptive
asynchronous D-R algorithm proposed in Section II-B.
Here, we consider that the both nodes v(k+1) and w(k+1)

do the local estimations and exchange their estimates
for consensus step. The iterations of the algorithm writes:

At nodes v ∈ {v(k+1), w(k+1)} perform:

θ̃
(k+1)

v = proxγ,fv(θ̃v,θ(k+1))(u
(k)
v ) (11)

z(k+1)
v (`) =


1
2

∑
i∈v

(
2θ̃

(k+1)

i − u(k)
i

)
(`) for ` = 1, 2

(
2θ̃

(k+1)

v − u(k)
v

)
(`) for ` = 3

u(k+1)
v = u(k)

v + z(k+1)
v − θ̃

(k+1)

v

The position of the target is given by the first two elements
of θ̃n. As pointed out in [6,7], although the problem (10) is
convex in θ̃v , but solving it can produce only a suboptimal
solution to the problem (9) due to the fact that (10) discards
the quadratic relationship

[θ̃v − r̃v]TS[θ̃v − r̃v] = 0 (12)
among the elements of θ̃v , where

r̃v = [rTv , 0]T and S =

1 0 0
0 1 0
0 0 −1

 .
Thus, we introduce the above quadratic constraint into (11),
and rewrite it as following constrained optimization problems:

θ̃
∗
v = arg min

θ̃v

1

2
‖Bvθ̃v − gv‖22 +

1

2γ
‖θ̃v − uv‖22

s.t. [θ̃v − r̃v]TS[θ̃v − r̃v] = 0 (13)
where we dropped the index k for sake of notational simplicity.
Note that the problem (13) is no more convex in θ̃v since the
quadratic constraint is not convex. The problems of these type
are called generalized trust region subproblems (GTRS) [10].
To find the global solution of the problem (13), we follow the
idea in [6].

C. Numerical Simulation

In our numerical simulation, we considered two trans-
mitters and six receivers, whose positions in 2D Cartesian
coordinates are: t1 = [0, 0], t2 = [2000, 2000], r1 =
[−1000,−1000], r2 = [1500,−1000], r3 = [−1000, 1000],
r4 = [1500, 1000], r5 = [1500, 2500], and rt =
[2500, 1500], respectively (unit of distance is meter). The
receivers form nodes of the connected graph G with edges
E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}, {4, 6}}. Let the ini-
tial position of the target be θ(0) = [500, 500] and it is moving

0 500 1000 1500 2000 2500 3000 3500
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(a) Convergence of solultions against iterations (k):
θ̄ represent mean of θv , v = 1, · · · , N , and θtrue
represents true positions of traget.
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Fig. 2. Numerical simulation results on tracking slowly moving target.

in spiral with the target position is given by parametric equa-
tion: x(k) = R(k) cos(t(k))+θ(0)x , y(k) = R(k) sin(t(k))+θ(0)y ,
R(k+1) = R(k) + ∇R, and t(k+1) = t(k) + ∇t sampled at
intervals ∇R = 2.5 and ∇t = 0.25. The range measurements
ρm,n and DOA measurements ϕv are corrupted by Gaussian
noise with standard deviations 5 and 0.5, respectively. We
choose ωv = 1, v = 1, · · · , N .

We compare the tracking ability of the proposed adaptive
distributed (both synchronous and asynchronous) algorithms.
For both settings, we chose parameter γ = 2E−8. Figure 2(a)
clearly shows the effect of imposing the quadratic constraint
(12), thus it is necessary for the accurate solution. Figure 2(b)
shows the true track of the target, and the tracks estimated
by the two algorithms. Between two sample points of the
true track (i.e. between two blue star markers on blue curve),
we allowed 50 iterations for both the algorithms, and it is
sufficient to track continuously the target with good accuracies.
In spite of using only two nodes in estimation at each iteration,
the asynchronous algorithm, after certain initial lag, performs
almost similar to the synchronous one that involved all six
nodes at each iteration. We also observe that when target
moves faster (at outer periphery of the spiral), then the two
algorithm make larger errors, which suggests that the receivers
should sample the measurements at shorter intervals, and
should have faster computation capability to do more iterations
in between the two samples.
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