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ABSTRACT
In the field of convex optimization, one is frequently

lead to solve a composite minimization problem involving
a smooth function F and a non smooth function G. In this
context, it is well known that the classical proximal gradient
algorithm can be accelerated using the Nesterov technique,
which leads to the celebrated FISTA. This paper investigates
a stochastic version of FISTA that can be applied to the case
where the function F is intractable, but can be represented as
an expectation. Although it is rather well known that in the
stochastic case, the Nesterov acceleration does not bring a
clear advantage on the long term over the averaged proximal
gradient algorithm, it is demonstrated in this paper that it
is beneficial during the first iterations. This argues in favor
of the Nesterov acceleration in many situations in machine
learning, where only a few algorithm iterations are required.
The technique is based on the study of a Lyapounov function
which is inspired by the ODE method applied to the Nesterov
acceleration.

Index Terms— FISTA, Nesterov acceleration, Stochastic
optimization

1. INTRODUCTION

Many applications in the fields of machine learning and sig-
nal processing [1, 2, 3], require the solution of the composite
programming problem

min
x∈X

F (x) +G(x) (1)

where X is an Euclidean space, and F and G belong to
the set Γ0(X) of convex, lower semi-continuous and proper
functions. In these contexts, F often represents a smooth
cost function and G a non smooth regularization term. To
solve (1), the proximal gradient algorithm is a standard
method whose iterations can be written

xn+1 = proxγG(xn − γ∇F (xn)), (2)

where γ > 0 is a step size, and where proxγG(x) =

arg miny∈X γG(y)+ 1
2‖x−y‖

2 is the so-called proximity op-

erator of γG. This algorithm is known to converge to a mini-
mizer x? of F +G at the rate (F +G)(xn)− (F +G)(x?) =
O(1/n). By means of an additional relaxation step, called
Nesterov acceleration, the algorithm becomes the so-called
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA,
[4, 5]) which achieves the convergence rate O(1/n2) that
cannot be improved by another first order method [6, 7].
The exploration of Nesterov’s acceleration technique aroused
many works, see [8, 9, 10, 11, 12] among others. One in-
teresting approach is provided by Su et al. [8], that uses a
dynamical systems technique to explain Nesterov accelera-
tion. More precisely, the sequence of iterates of FISTA is seen
here as the discretization of the solution of a non autonomous
second order ordinary differential equation (ODE). This ODE
has been extensively studied in the literature, see e.g [13, 14].
Using a Lyapunov function technique, it can be shown that
(F + G)(x(t)) − (F + G)(x?) = O(1/t2) where x? is a
minimizer of F + G and x is a solution to the differential
equation. Inspired by this Lyapunov function technique, [8]
uses a discrete Lyapunov function to rederive the O(1/n2)
convergence rate of FISTA.

As it is often the case in machine learning and signal pro-
cessing, this paper considers the resolution of (1) under a
stochastic first order oracle model. In this model, the func-
tion F is represented as an expectation F (x) = Eξ(f(ξ, x)),
where ξ is a random variable (r.v) and f(ξ, ·) ∈ Γ0(X). More-
over, the distribution of ξ is revealed across time to the user
through i.i.d copies (ξn)n of ξ. In many applications, the be-
havior of optimization algorithms in the first iterations is of
particular interest. For example, in empirical risk minimiza-
tion, there is no need to optimize below the so-called statis-
tical error [15]. Besides, early stopping techniques [16] rely
on finding a rough estimate of a minimizer. Therefore, we
shall focus on the behavior of optimization algorithms, in the
first order stochastic oracle model, specifically in the first it-
erations.

To solve Problem (1) in the first order oracle model, the
proximal stochastic gradient algorithm consists in replacing
at each iteration of the proximal gradient algorithm the true
gradient ∇F (xn) by a stochastic realization ∇xf(ξn+1, xn).



After averaging the iterates, this algorithm achieves the con-
vergence rate O(1/

√
n) in expectation [2] when used with

a constant step size over n iterations (the step size depends
on n). Although this convergence rate is optimal ([17]), this
algorithm is known to be close to its deterministicO(1/n) be-
havior in the first iterations [2, 18]. In this work, the stochastic
FISTA is studied. Each iteration of this algorithm is a proxi-
mal stochastic gradient step followed by a Nesterov accelera-
tion step. It can be written

xn+1 = proxγn+1G(yn − γn+1∇yf(ξn+1, yn)) (3)

yn+1 = xn+1 +
n

n+ r
(xn+1 − xn). (4)

where r ≥ 3 and (γn) is a sequence of positive and non
increasing step sizes. We provide convergence rates for the
stochastic FISTA using a stochastic Lyapunov technique in-
spired from [8]. When used with a constant step size, the
algorithm achieves the optimal O(1/

√
n) convergence rate

without averaging, and with decreasing step sizes stochas-
tic FISTA achieves the rate O(log(n)/

√
n). More impor-

tantly, it will be shown that the stochastic FISTA is close
to its O(1/n2) deterministic behavior in the first iterations.
Therefore, it is faster than the proximal stochastic gradient
algorithm in the beginning of the algorithms. This fact is sup-
ported by numerical experiments on a logistic regression task.

A perturbed FISTA is also studied [3]. The paper [3]
proves convergence rates for the perturbed FISTA in the case
where the true gradient ∇F (yn) is replaced at each iteration
by a Monte Carlo approximation Hn+1. We will rather con-
centrate on the first order oracle model in which our Lyapunov
type analysis allows to derive sharper bounds. In particular,
we can better understand the behavior of the algorithm in its
first iterations.

2. CONVERGENCE RATE

Consider a probability space (Ξ,G , µ) and a r.v. ξ with dis-
tribution µ defined on some probability space (Ω,F ,P). The
mathematical expectation is denoted E and the variance V.
Consider a sequence of i.i.d copies (ξn) of ξ and a determin-
istic x0 = y0 ∈ X. We posit the following assumptions.

Assumption 1. For every s ∈ Ξ, f(s, ·) and G are in Γ0(X).
Moreover, for every x ∈ X, f(·, x) is measurable and µ-
integrable.

Assumption 2. For every s ∈ Ξ, f(s, ·) is differentiable, and
there exists σ ≥ 0 such that for every x ∈ X,

Vξ(‖∇f(ξ, x)‖) ≤ σ2.

Assumption 3. The function F (x) = Eξ(f(ξ, x)) is differ-
entiable and there exists L > 0 such that its gradient ∇F is
L-Lipschitz continuous.

Assumption 4. The functionH = F+G admits a minimizer
x? and we denote H(x?) = H?.

Theorem 1. Consider the iterates (xn) of the stochastic
FISTA (3)-(4) and let assumptions 1–4 hold true. If r > 3
and if the sequence (nγn) is square summable, then, almost
surely (a.s.) the sequence (nγn(H(xn) −H?)) is summable
and the sequence (n2γn(H(xn)−H?)) is bounded.

Theorem 2. Assume that r ≥ 3, and that assumptions 1–4
hold true. Then,

EH(xn)−H? ≤
γ0(r − 2)2

γn(n+ r − 2)2
(H(x0)−H(x?)) (5)

+
(r − 1)2

2γn(n+ r − 2)2
‖x0 − x?‖2

+ σ2
n∑
k=1

γ2k
2γn(1− Lγk)

(k + r − 2)2

(n+ r − 2)2
.

Moreover, the step sizes that minimize the upper bound can
be written γn = C/(n+ r − 2)3/2 where C > 0 is such that
γ0L ≤ 0.1. In this case

EH(xn)−H? ≤
√
r − 2(H(x0)−H?)√

n+ r − 2
+

(r − 1)2‖x0 − x?‖2

2C
√
n+ r − 2

(6)

+
5σ2

9

C log(n+ r − 2)√
n+ r − 2

.

Theorem 3. Assume that r ≥ 3, and that assumptions 1–4
hold true. If moreover the step size is constant γn ≡ γ > 0,
then,

EH(xn)−H? ≤
(r − 2)2

(n+ r − 2)2
(H(x0)−H?)

+
(r − 2)2

2γ(n+ r − 2)2
‖x0 − x?‖2

+
2σ2

3

γ

1− Lγ
(n+ r − 1). (7)

If G ≡ 0, we have the slightly more precise result

EF (xn)− F? ≤
(r − 2)2

(n+ r − 2)2
(F (x0)− F?)

+
(r − 2)2

2γ(n+ r − 2)2
‖x0 − x?‖2

+
2σ2

3
γ(1 + Lγ)(n+ r − 1). (8)

Let n ≥ 1 and assume the stochastic FISTA is run over n
iterations with a constant step size γ. Then, the step size that
minimizes the upper bound can be written γ = C/(n + r −
2)3/2 where C > 0. In this case, if γL ≤ 0.1, the nth iterate



of stochastic FISTA satisfies

EH(xn)−H? ≤
(r − 2)2

(n+ r − 2)2
(H(x0)−H?)

+
(r − 2)2‖y0 − x?‖2

2C
√
n+ r − 2

+
40

27

Cσ2

√
n+ r − 2

.

(9)

3. DERIVATION OF THE CONVERGENCE RATES

This section is devoted to the proof of the theorems 1–3.

Lemma 4. Let assumptions 1–4 hold true. For every n ≥ 1,
consider the random variable (also called the stochastic Lya-
punov function)

Vn :=
2γn(n+ r − 2)2

r − 1
(H(xn)−H?)

+ (r − 1)‖zn − x?‖2

where zn := n+r−1
r−1 yn − n

r−1xn and where xn and yn are
defined by Equations (3)-(4). Then

En(Vn+1) ≤ Vn

+
2

r − 1
(γn+1n(n+ r − 1)− γn(n+ r − 2)2)(H(xn)−H?)

+
γn+1

2

1− Lγn+1

(n+ r − 1)2

r − 1
σ2.

where En denotes the conditional expectation with respect to
the sigma-field σ(ξ1, . . . , ξn). Moreover, if G ≡ 0,

En(Vn+1) ≤ Vn

+
2

r − 1
(γn+1n(n+ r − 1)− γn(n+ r − 2)2)(F (xn)− F?)

+
γn+1

2(1 + Lγn+1)(n+ r − 1)2

r − 1
σ2

− γn+1
2(1− Lγn+1)(n+ r − 1)2

r − 1
‖∇F (yn)‖2

The proof of this lemma is postponed to the appendix 5.1.
Recalling that r ≥ 3 and that (γn) is positive and non-
increasing,

γn+1n(n+ r − 1)− γn(n+ r − 2)2

≤ γn+1n(n+ r − 1)− γn+1(n+ r − 2)2

= −γn+1(1 + (r − 3)(n+ r − 1)).

Applying Robbins-Siegmund lemma [19] to the inequality of
lemma 4 we get that if r > 3 and if nγn is square summable,
then nγn(H(xn)−H?) is summable and n2γn(H(xn)−H?)
is bounded a.s. Hence, theorem 1 is proven. Moreover, taking
the expectation in the inequality of lemma 4, and iterating we
get

E(Vn) ≤ V0 +
n−1∑
k=0

γ2k+1

1− Lγk+1

(k + r − 1)2

r − 1
σ2

Hence,

EH(xn)−H? ≤
(r − 1)V0

2γn(n+ r − 2)2
(10)

+ σ2
n∑
k=1

γ2k
2γn(1− Lγk)

(k + r − 2)2

(n+ r − 2)2
.

Due to a lack of space, we do not enter into details in this part
of the proof. If γn = C/(n+ r − 2)3/2 where C > 0 is such
that γ1L ≤ 0.1, it is easily seen that

EH(xn)−H? ≤
(r − 1)V0

2C
√
n+ r − 2

+
5σ2

9

C log(n+ r − 2)√
n+ r − 2

.

(11)
Hence, theorem 2 is proven. Finally, consider a constant step
size γn ≡ γ ∈ (0, 0.1/L). Then, we have for every n ≥ 1,

EH(xn)−H? ≤
(r − 1)V0

2γ(n+ r − 2)2
+

2σ2

3

γ

1− Lγ
(n+ r − 1)

(12)

Note that if G ≡ 0, the second term a the right hand side is
replaced by 2σ2

3 γ(1 + Lγ)(n+ r − 1).
Finally, assume that a fixed step size γ is taken over n ≥ 1

iterations of the algorithm. Setting γ = C/(n + r − 2)3/2

where C > 0 is such that γL ≤ 0.1, we have,

EH(xn)−H? ≤
(r − 2)2

(n+ r − 2)2
(H(x0)−H?)

+
(r − 2)2‖x0 − x?‖2

2C
√
n+ r − 2

+
40

27

Cσ2

√
n+ r − 2

,

(13)

and theorem 3 is proven.

4. BEHAVIOR IN THE FIRST ITERATIONS

In this section, we show that stochastic FISTA is faster than
the proximal stochastic gradient algorithm in the first itera-
tions. This is because both algorithms are close to their de-
terministic behavior in the first iterations, and the FISTA has
convergence rate O(1/n2) which is faster that the O(1/n) of
the proximal gradient algorithm. We start by the following
result that is the counterpart of theorem 3 for the proximal
stochastic gradient algorithm.

Theorem 5.

The proof of this result can be found in [2] under the ad-
ditional assumption that (xn)n is a.s a bounded sequence.The Verifier celaVerifier cela

proof of this theorem is postponed to Appendix 5.2

4.1. Upper bounds

We first perform an analysis based on the upper bounds in
theorems 3 and 5. This approach is ligitimate by the fact



that these bounds are sharp. If the step size γ ≤ 0.1/L is
constant, the last term at the right hand side of (7) or (8) is
lower than the other terms at the beginning of the algorithm
(if n is enough small). Loosely speaking, we have in this case
EH(xn)−H? ≤ K/(n+r−2)2. For the proximal stochastic
gradient algorithm, we rather have EH(xn)−H? ≤ K/n.

In Figure 1 we illustrate and compare the upper bounds
provided by theorems 5 and 3 (with r = 3). For different

Fig. 1. The upper bounds as a function of n for the proximal
stochastic gradient (PSG) algorithm (after averaging) and the
stochastic FISTA (SFISTA)

level σ2 of noise, it is seen that the constant step proximal
stochastic gradient algorithm is slower in the first iterations
than the stochastic FISTA.

4.2. Simulations

In this section, we consider λ > 0 and the minimization of
F (x) + G(x) where F (x) = E(f(ξ, x)) is the cost function
associated with the logistic regression andG(x) = λ‖x‖1 (i.e
a Lasso regularization). More precisely, the user is provided
with i.i.d copies of a r.v. ξ = (X,Y ) online and f(ξ, x) =
`(Y 〈x,X〉) where `(u) = log(1 + exp(−u)). To solve this
problem we compare the averaged proximal stochastic gradi-
ent algorithm [2] to the stochastic FISTA in Figure 2.

The regression task is performed over the Diabetic Retinopa-
thy dataset1 and the code is available on Github2. We simulate
each algorithm with a constant step size ranging from 0.01 to
10.0 and plot the best performing curves. Each simulation is
done ten times and the mean curve is represented over 100
iterations. The first and the last deciles are also showed in
Figure 2 (the curves above and below the mean curves). We
set the parameter λ to 0.1 and r = 3.5 for stochastic FISTA.

Despite exhibiting more instability, the stochastic FISTA
is (as expected) faster than the proximal stochastic gradient in

1http://www.it.lut.fi/project/imageret/
diaretdb1/

2https://github.com/adil-salim/

Fig. 2. The objective function F + G as a function of n for
each algorithm. PSG denotes the averages stochastic gradient
and SFISTA denotes the stochastic FISTA.

the first iterations for each step size.

5. APPENDIX

5.1. Proof of lemma 4

This appendix is devoted to the proof of lemma 4. For every
γ > 0, consider the so-called Moreau’s envelope ofG defined
by γG(x) = arg miny∈XG(y)+ 1

2γ ‖x−y‖
2. It is known that

γG ∈ Γ0(X) is differentiable with a 1/γ-Lipschitz continu-
ous gradient, and that ∇γG(x) = 1/γ(x − proxγG(x)) ∈
∂G(proxγG(x)) where ∂G denotes the subdifferential of G.
Consider

Tγ(ξ, x) = ∇f(ξ, x) +∇γG(x− γ∇f(ξ, x)).

With this notation, proxγG(x−γ∇f(ξ, x)) = x−γTγ(ξ, x).
Using Assumption 3,

F (y − γTγ(ξ, y)) ≤F (y)− γ〈∇F (y), Tγ(ξ, y)〉

+
L

2
γ2‖Tγ(ξ, y)‖2

for every y ∈ X, γ > 0, ξ ∈ Ξ. Besides, using Assumption 1,

F (y) ≤F (x) + 〈∇F (y), y − x〉 and
G(y − γTγ(ξ, y)) ≤G(x)

+〈∇γG(y−γ∇f(ξ, y)), y − x− γTγ(ξ, y)〉.

Summing the three last inequalities,

H(y−γTγ(ξ, y)) ≤ H(x) +
L

2
γ2‖Tγ(ξ, y)‖2 (14)

+ 〈∇F (y) +∇γG(y − γ∇f(ξ, y)), y − x〉
− γ〈∇F (y) +∇γG(y − γ∇f(ξ, y)), Tγ(ξ, y)〉.

http://www.it.lut.fi/project/imageret/diaretdb1/
http://www.it.lut.fi/project/imageret/diaretdb1/
https://github.com/adil-salim/


Setting x ≡ xn, y ≡ yn, γ ≡ γn+1, ξ ≡ ξn+1 and denoting
∇γn+1G ≡ ∇γn+1G(yn − γn+1∇f(ξn+1, yn))

H(yn−γn+1Tγn+1
(ξn+1, yn)) ≤ H(xn) (15)

+
L

2
γ2n+1‖Tγn+1

(ξn+1, yn)‖2

+ 〈∇F (yn) +∇γn+1G, yn − xn〉
− γn+1〈∇F (yn) +∇γn+1G,Tγn+1

(ξn+1, yn)〉.

Setting x ≡ x?, y ≡ yn, γ ≡ γn+1 and ξ ≡ ξn+1, we obtain

H(yn−γn+1Tγn+1
(ξn+1, yn)) ≤ H? (16)

+
L

2
γ2n+1‖Tγn+1(ξn+1, yn)‖2

+ 〈∇F (yn) +∇γn+1G, yn − x?〉
− γn+1〈∇F (yn) +∇γn+1G,Tγn+1

(ξn+1, yn)〉.

Noting that

zn+1 = zn − γn+1
n+ r − 1

r − 1
Tγn+1(ξn+1, yn), (17)

the average n/(n+ r − 1)×(15)+(r − 1)/(n+ r − 1)×(16)
of the above inequalities leads to

H(xn+1)−H? ≤
n

n+ r − 1
(H(xn)−H?) (18)

+
r − 1

n+ r − 1
〈∇F (yn) +∇γn+1G, zn+1 − x?〉

+
L

2
γ2n+1‖Tγn+1

(ξn+1, yn)‖2.

Since

‖zn+1 − x?‖2 =‖zn − x?‖2 (19)

+ 2〈zn+1 − zn, zn+1 − x?〉 − ‖zn+1 − zn‖2,

the linear combination of inequalities 2γn+1(n+r−1)2/(r−
1)×(18)+(r − 1)×(19) leads to

2γn+1(n+ r − 1)2

r − 1
(H(xn+1)−H?) + (r − 1)‖zn+1 − x?‖2

≤ 2γn+1n(n+ r − 1)

r − 1
(H(xn)−H?) + (r − 1)‖zn − x?‖2

− 2γn+1(n+ r − 1)〈∇f(ξn+1, yn)−∇F (yn), zn+1 − x?〉

− (1− Lγn+1)
(n+ r − 1)2

r − 1
‖γn+1Tγn+1

(ξn+1, yn)‖2.

Denoting χn+1 the sum of the last two terms, we finally have

Vn+1 ≤ Vn

+
2

r − 1
(γn+1n(n+ r − 1)− γn(n+ r − 2)2)(H(xn)−H?)

+ χn+1.

To control χn+1, first consider the case whereG ≡ 0. Recall-
ing (17), and that En〈∇f(ξn+1, yn)−∇F (yn), zn−x?〉 = 0,

Enχn+1 = (1 + Lγn+1)γ2n+1

(n+ r − 1)2

r − 1
σ2

− (1− Lγn+1)γ2n+1

(n+ r − 1)2

r − 1
‖∇F (yn)‖2.

In the general case, note that, if Lγn+1 < 1,

|2〈∇f(ξn+1, yn)−∇F (yn), γn+1Tγn+1
(ξn+1, yn)〉|

≤ 1− Lγn+1

γn+1
‖γn+1Tγn+1(ξn+1, yn)‖2

+
γn+1

1− Lγn+1
‖∇f(ξn+1, yn)−∇F (yn)‖2.

Using (17) and En〈∇f(ξn+1, yn)−∇F (yn), zn − x?〉 = 0,
we have

Enχn+1 ≤
γn+1

2

1− Lγn+1

(n+ r − 1)2

r − 1
σ2,

and lemma 4 is proven.

5.2. Proof of theorem 5
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