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Notations

For every set T , we denote by RT the set of functions on T → R. If X is a Euclidean space, we
denote by 〈 . , . 〉 the standard inner product on X , and by ‖ . ‖ the Euclidean norm.

We denote by Γ0(X ) the set of convex, proper and lower semicontinuous functions on X →
(−∞,+∞]. For every h ∈ Γ0(X ), γ > 0, we introduce the proximity operator

proxγ,h(x) = arg min
w∈X

h(w) +
‖w − x‖2

2γ

and the Moreau envelope

hγ(x) = min
w∈X

h(w) +
‖w − x‖2

2γ

for every x ∈ X . We denote by ∂h(x) the subdifferential of h at the point x, by ∂h0(x) the least
norm element of ∂h(x). Recall that hγ is differentiable and ∇hγ(x) = 1

γ (x − proxγ,h(x)). If A is
a set, the notation ιA stands for the indicator function of the set A, equal to zero on that set and
to +∞ elsewhere. If R is a linear operator, we denote by R∗ the adjoint operator. When D ⊂ E,
d(x,D) denote the distance from the point x ∈ E to D and if D is closed and convex, ΠD denote
the projection onto D. The set of minimizers of h is the set of zeros of ∂h denoted Z(∂h).

1 Statement of the Problem

1.1 Douglas-Rachford algorithm

Consider the Problem
min
x∈X

F (x) +G(x) (1)

where F,G ∈ Γ0(X ). The Douglas-Rachford algorithm writes

un+1 = proxγ,F (xn)

zn+1 = proxγ,G(2un+1 − xn)

xn+1 = xn + zn+1 − un+1 .

Under the standard qualification condition 0 ∈ ri(dom(F ) − dom(G)) and assuming that the set
of minimizers of problem (1) is non empty, the iterates proxγ,F (xn) converge to a minimizer of
problem (1) as n→∞.
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1.2 Adaptive Scenario

Let ξ be a random variable defined on some probability space (Ω,F ,P) into an arbitrary measurable
space (Ξ,G) with distribution µ. We say that a mapping f : X × Ξ → (−∞,+∞] is a normal
convex integrand if f( . , s) ∈ Γ0(X ) for every s ∈ Ξ and if f(x, . ) is measurable for every x ∈ X .
The expectation E(|f(x, ξ)|) according to the random variable ξ is supposed to be finite.

From now on, assume that the mapping F and G are of the form

F (x) = E(f(x, ξ))

G(x) = E(g(x, ξ)) ,

where f, g are normal convex integrands. Denote by (ξn : n ∈ N) a sequence of iid copies of
the r.v. ξ. In the sequel, we use the notation fn := f( . , ξn) and gn := g( . , ξn). The adaptive
Douglas-Rachford algorithm is given by

un+1 = proxγ,fn+1
(xn)

zn+1 = proxγ,gn+1
(2un+1 − xn)

xn+1 = xn + zn+1 − un+1 .

We denote by D(s) the domain of g(·, s), and by D the set defined by the relation x ∈ D ⇐⇒
x ∈ D(ξ) a.s. We denote by d(x) = d(x,D). We also denote F γ(x) =

∫
fγ(x, s)µ(ds) and Gγ(x) =∫

gγ(x, s)µ(ds). We assume that f(·, ξ) has a.s a full domain (equal to X ) and is continuously dif-
ferentiable. Under these assumptions, Z(∂(G+F )) = Z(∂G+∇F ) = Z(E(∂g(·, ξ)) +E(∇f(·, ξ)))
[33].

1.3 Useful facts

We first observe that the process (xn) described by Eq. (??) is a homogeneous Markov chain with
transition kernel denoted by Pγ . The kernel Pγ and the initial measure ν determine completely the
probability distribution of the process (xn), seen as a (Ω,F ) → (EN,B(E)⊗N) random variable.
We shall denote this probability distribution on (EN,B(E)⊗N) as Pν,γ . We denote by Eν,γ the
corresponding expectation. When ν = δa for some a ∈ E, we shall prefer the notations Pa,γ and
Ea,γ to Pδa,γ and Eδa,γ . From nom on, (xn) will denote the canonical process on the canonical
space (EN,B(E)⊗N).

We denote as Fn the sub-σ-field of F generated by the family {x0, {ξγk : 1 ≤ k ≤ n}}, and we
write En[·] = E[· |Fn] for n ∈ N.

In the remainder of the paper, C will always denote a positive constant that does not depend
on the time n nor on γ. This constant may change from a line of calculation to another. In all our
derivations, γ will lie in the interval (0, γ0] where γ0 is a fixed constant which is chosen as small
as needed.

Then, we observe that the Markov kernels Pγ are Feller, i.e., they take the set Cb(E) of the real,
continuous, and bounded functions on E to Cb(E). Indeed, for each f ∈ Cb(E), Eq. (??) shows
that Pγ(·, f) ∈ Cb(E) by the continuity of proxγg(·,s) and B(s, ·), and by dominated convergence.

For each γ > 0, we denote as

I(Pγ) := {π ∈M(E) : π = πPγ}

the set of invariant probability measures of Pγ . Define the family of kernels P := {Pγ}γ∈(0,γ0],
and let

I(P) :=
⋃

γ∈(0,γ0]

I(Pγ)

be the set of distributions π such that π = πPγ for at least one Pγ with γ ∈ (0, γ0].
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Finally, it is a standard fact of the monotone operator theory that for any x0 in the domain of
F +G, the Differential Inclusion (DI)ß

ẋ(t) ∈ −(∂F + ∂G)(x(t))
x(0) = x0

(2)

admits a unique absolutely continuous solution on R+ := [0,∞).
Consider the map Φ : dom(G) × R+ → dom(G), (x0, t) 7→ x(t) where x(t) is the DI solution

with initial value x0. Then, Φ satisfies ‖Φ(x, t) − Φ(y, t)‖ ≤ ‖x − y‖ for all t ≥ 0 and all x, y ∈
dom(A). Since E is complete, Φ can be extended to a map from cl(dom(G))×R+ to cl(dom(G)).
This extension that we still denote as Φ is a semiflow on cl(dom(G)) × R+, being a continuous
cl(dom(G))×R+ → cl(dom(G)) function satisfying Φ(·, 0) = I, and Φ(x, t+ s) = Φ(Φ(x, s), t) for
each x ∈ cl(dom(G)), and t, s ≥ 0.

2 Theorem

H1 There exists x? ∈ Z(∂G +∇F ) admitting a L2(µ) representation (ϕ,ψ) i.e ∃ϕ,ψ ∈ L2(µ),
such that ϕ(ξ) ∈ ∂g(x?, ξ) a.s, ψ(ξ) = ∇f(x?, ξ) a.s and E(ϕ(ξ) + ψ(ξ)) = 0.

H2 There exists L > 0 s.t. ∇f(·, ξ) is a.s L-Lipschitz continuous.

H3 The function F +G satisfies one of the following properties:

(a) F +G is coercive.

(b) F +G is supercoercive.

H4 For every compact set K ⊂ E, there exists ε > 0 such that

sup
x∈K∩D

∫
‖∂g0(x, s)‖1+ε µ(ds) <∞,

H5 There exists a closed ball in E such that ‖∇f(x, s)‖ ≤ M(s) for all x in this ball, where
M(s) is µ-integrable. Moreover, for every compact set K ⊂ E, there exists ε > 0 such that

sup
x∈K

∫
‖∇f(x, s)‖1+ε µ(ds) <∞ .

H6 For all γ ∈ (0, γ0] and all x ∈ E,∫ Å
‖∇fγ(x, s)‖+

1

γ
‖ proxγg(·,s)(x)−Πcl(D(s))(x)‖

ã
µ(ds) ≤ C(1 + |F γ(x) +Gγ(x)|) .

H7 ∀x ∈ E,
∫
d(x,D(s))2 µ(ds) ≥ Cd(x)2.

H8 For every compact set K ⊂ E, there exists ε > 0 such that

sup
γ∈(0,γ0],x∈K

1

γ1+ε

∫
‖ proxγg(·,s)(x)−Πcl(D(s))(x)‖1+ε µ(ds) <∞ .

Theorem 2.1. Let Hypotheses H1–H8 hold true. Then, for each probability measure ν having a
finite second moment, for any ε > 0,

lim sup
n→∞

1

n+ 1

n∑
k=0

Pν,γ (d(xk, arg min(F +G)) > ε) −−−→
γ→0

0 .
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Moreover, if Hypothesis H3–(b) is satisfied, then

lim sup
n→∞

Pν,γ (d (x̄n, arg min(F +G)) ≥ ε) −−−→
γ→0

0, and

lim sup
n→∞

d (Eν,γ(x̄n), arg min(F +G)) −−−→
γ→0

0 .

where x̄n = 1
n

∑n
k=1 xk.

3 Proof of Theorem 2.1

In this section, we study the iterations given by the adaptive Douglas Rachford algorithm. Let
γ0 > 0, a ∈ E and (ξn)n∈N be an i.i.d sequence of random variables from (Ω,F ,P) to (Ξ,G) with
distribution µ. The adaptive Douglas Rachford algorithm with step size γ > 0 writes x0 = a and
for all n ∈ N,

xn+1 = xn − γ∇fγ(xn, ξn+1)− γ∇gγ(xn − 2γ∇fγ(xn, ξn+1), ξn+1). (3)

Define
hγ(x, s) := −∇fγ(x, s)−∇gγ(x− 2γ∇fγ(x, s), s).

The algorithm (3) can be rewritten as

xn+1 = xn + γhγ(xn, ξn+1). (4)

In Sec. 3.1, we show that the linearly interpolated process constructed from the sequence (xn)
with time frame γ converges narrowly as γ → 0 to a Differential Inclusion (DI) solution in the
topology of uniform convergence on compact sets. The main result of this section is Th. 3.1, which
has its own interest. To prove this theorem, we establish the tightness of the linearly interpolated
process (Lem. 3.2), then we show that the limit points coincide with the DI solution (Lem. 3.3–
3.5). In Sec. 3.2, we start by establishing the inequality (17), which implies the tightness of the
set of invariant measures I(P) in Lem 3.7. Then, we show that the cluster points of I(P) are
invariant measures for the flow induced by the DI (Lem 3.9). In the different domains case, this
lemma requires that the invariant measures of Pγ put most of their weights in a thickening of the
domain D of order γ. This fact is established by Lem. 3.8.

3.1 Weak APT

For every γ > 0, we introduce the linearly interpolated process

Xγ : (EN,B(E)⊗N)→ (C(R+, E),B(C(R+, E)))

, defined for every x = (xn : n ∈ N) in EN as

Xγ(x) : t 7→ xb tγ c + (t/γ − bt/γc)(xb tγ c+1 − xb tγ c) .

This map will be referred to as the linearly interpolated process. When x = (xn) is the process
with the probability measure Pν,γ defined above, the distribution of the r.v. Xγ is Pν,γX−1

γ .
The set C(R+, E) of continuous functions from R+ to E is equipped with the topology of

uniform convergence on the compact intervals, who is known to be compatible with the distance
d defined as

d(x, y) :=
∑
n∈N∗

2−n
Ç

1 ∧ sup
t∈[0,n]

‖x(t)− y(t)‖
å
.

If S is a subset of E and ε > 0, we denote by Sε := {a ∈ E : d(a, S) < ε} the ε-neighborhood
of S. The aim of the beginning section is to establish the following result:
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Theorem 3.1. Let Assumptions H4, H5, H7 and H8 hold true. Then, for every η > 0, for every
compact set K ⊂ E s.t. K ∩D 6= ∅,

∀M ≥ 0, sup
a∈K∩DγM

Pa,γ
(
d(Xγ ,Φ(Πcl(D)(a), ·)) > η

)
−−−→
γ→0

0. (5)

Choose a compact set K ⊂ E s.t. K ∩ cl(D) 6= ∅. Choose R > 0 s.t. K is contained in the ball
of radius R. For every x = (xn : n ∈ N) in EN, define τR(x) := inf{n ∈ N : xn > R} and introduce
the measurable mapping CR : EN → EN, given by

CR(x) : n 7→ xn1n<τR(x) + xτR(x)1n≥τR(x) .

Consider the image measure P̄a,γ := Pa,γC−1
R , which corresponds to the law of the truncated

process CR(x) and denote by Ēa,γ the corresponding mathematical expectation. The crux of the
proof consists in showing that for every η > 0 and every M > 0,

sup
a∈K∩DγM

P̄a,γ
(
d(Xγ ,Φ(Πcl(D)(a), ·)) > η

)
−−−→
γ→0

0. (6)

Eq. (6) is the counterpart of [13, Lemma 4.3]. Once it has been proven, the conclusion follows
verbatim from [13, Section 4, End of the proof]. Our aim is thus to establish Eq. (6). The proof
follows the same steps as the proof of [13, Lemma 4.3] up to some confined changes. Here, the
steps of the proof which do not need any modification are recalled rather briefly (we refer the
reader to [13] for the details). On the other hand, the parts which require an adaptation are
explicitly stated as lemmas, whose detailed proofs are provided at the end of this section.

Define hγ,R(x, s) := hγ(x, s)1‖x‖≤R. First, we recall the following decomposition, established
in [13]:

Xγ = Π0 + Gγ,R ◦ Xγ + Xγ ◦Mγ,R ,

P̄a,γ almost surely, where Π0 : EN → C(R+, E), Gγ,R : C(R+, E) → C(R+, E) and ∆γ,R : EN →
EN are the mappings respectively defined by

Π0(x) : t 7→ x0

Mγ,R(x) : n 7→ (xn − x0)− γ
n−1∑
k=0

∫
hγ,R(s, xk)µ(ds)

Gγ,R(x) : t 7→
∫ t

0

∫
hγ,R(s, x(γbu/γc))µ(ds)du ,

for every x = (xn : n ∈ N) and every x ∈ C(R+, E) .

Lemma 3.2. For all γ ∈ (0, γ0] and all x ∈ EN, define Zγn+1(x) := γ−1(xn+1 − xn). There exists
ε > 0 such that:

sup
n∈N,a∈K∩DγM ,γ∈(0,γ0]

Ēa,γ
ÇÅ
‖Zγn‖+

d(xn)

γ
1‖xn‖≤R

ã1+ε
å
< +∞ (7)

Proof. Let ε be the smallest of the three constants (also named ε) in Assumptions H4, H5 and H8
respectively where K = BR. For every a, γ, the following holds for P̄a,γ-almost all x = (xn : n ∈ N):

d(xn+1)1‖xn+1‖≤R = d(xn+1)1‖xn+1‖≤R(1‖xn‖≤R + 1‖xn‖>R) = d(xn+1)1‖xn+1‖≤R1‖xn‖≤R

≤ d(xn+1)1‖xn‖≤R

= ‖xn+1 −ΠD(xn+1)‖1‖xn‖≤R
≤ ‖xn+1 −ΠD(xn)‖1‖xn‖≤R .

Using the notation Ēa,γn = Ēa,γ( . |x0, . . . , xn), we thus obtain:

Ēa,γn (d(xn+1)1+ε
1‖xn+1‖≤R) ≤

∫
‖xn + γhγ(xn, s)−ΠD(xn)‖1+ε

1‖xn‖≤R dµ(s) .
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By the convexity of ‖ · ‖1+ε, for all α ∈ (0, 1),

‖x+ y‖1+ε =
1

α1+ε

∥∥∥αx+ (1− α)
α

1− α
y
∥∥∥1+ε

≤ α−ε‖x‖1+ε + (1− α)−ε‖y‖1+ε .

Therefore, by setting δγ(x, s) := ‖x+ γhγ(x, s)−ΠD(s)(x)‖,

Ēa,γn (d(xn+1)1+ε
1‖xn+1‖≤R) ≤ α−ε

∫
δγ(xn, s)

1+ε
1‖xn‖≤R dµ(s)

+ (1− α)−ε
∫
‖ΠD(s)(xn)−ΠD(xn)‖1+ε

1‖xn‖≤R dµ(s) .

Note that for every s ∈ Ξ, x ∈ E,

δγ(x, s) = proxγg(·,s)(x− 2γ∇fγ(x, s)) + γ∇fγ(x, s)−ΠD(s)(x) + proxγg(·,s)(x)− proxγg(·,s)(x)

Hence,
‖δγ(x, s)‖ ≤ 3γ‖∇fγ(x, s)‖+ ‖ proxγg(·,s)(x)−ΠD(s)(x)‖

And, by Assumptions H4 and H5, there exists a deterministic constant C > 0 s.t.

sup
n

∫
δγ(xn, s)

1+ε
1‖xn‖≤R dµ(s) ≤ Cγ1+ε .

Moreover, since Πcl(D(s)) is a firmly non expansive operator [6, Chap. 4], it holds that for all
u ∈ cl(D), and for µ-almost all s,

‖Πcl(D(s))(xn)− u‖2 ≤ ‖xn − u‖2 − ‖Πcl(D(s))(xn)− xn‖2.

Taking u = Πcl(D)(xn), we obtain that

‖Πcl(D(s))(xn)−Πcl(D)(xn)‖2 ≤ d(xn)2 − d(xn, D(s))2. (8)

Making use of Assumption H7, and assuming without loss of generality that ε ≤ 1, we obtain∫
‖Πcl(D(s))(xn)−Πcl(D)(xn)‖1+ε dµ(s) ≤

Å∫
‖Πcl(D(s))(xn)−Πcl(D)(xn)‖2 dµ(s)

ã(1+ε)/2

≤ α′d(xn)1+ε ,

for some α′ ∈ [0, 1). Choosing α close enough to zero, we obtain that there exists ρ ∈ [0, 1) such
that

Ēa,γn
Å
d(xn+1)1+ε

γ1+ε
1‖xn+1‖≤R

ã
≤ ρd(xn)1+ε

γ1+ε
1‖xn‖≤R + C.

Taking the expectation at both sides, iterating, and using the fact that d(x0) = d(a) < Mγ, we
obtain that

sup
n∈N,a∈K∩DγM ,γ∈(0,γ0]

Ēa,γ
ÇÅ

d(xn)

γ

ã1+ε

1‖xn‖≤R

å
< +∞ . (9)

Since ∇gγ(·, s) is γ−1-Lipschitz continuous, ‖hγ(x, s)‖ ≤ ‖∇gγ(x, s)‖ + 3‖∇fγ(x, s)‖. Moreover,
choosing measurably x̃ ∈ D in such a way that ‖x − x̃‖ ≤ 2d(x), we obtain ‖∇gγ(x, s)‖ ≤
‖∂g0(x̃, s)‖+ 2d(x)

γ . Therefore, there exists R′ depending only on R and D s.t.

‖∇gγ(x, s)‖1‖x‖≤R ≤ ‖∂g0(x̃, s)‖1‖x̃‖≤R′ + 2
d(x)

γ
1‖x‖≤R .
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In the following, C is a positive constant that can change from a line to another. Choosing ε > 0
enough small and using Assumption H4, H5 and Eq. (9), we have

Ēa,γn (‖Zγn+1‖1+ε) =

∫
‖hγ(xn, s)‖1+ε

1‖xn‖≤R dµ(s)

≤
∫

(‖∇gγ(xn, s)‖+ 3‖∇fγ(xn, s)‖)1+ε
1‖xn‖≤R dµ(s)

≤C
∫
‖∇gγ(xn, s)‖1+ε

1‖xn‖≤R + ‖∇fγ(xn, s)‖1+ε
1‖xn‖≤R dµ(s)

≤C
∫
‖∂g0(x̃n, s)‖1+ε

1‖x̃n‖≤R′ dµ(s) + C

∫
‖∇fγ(xn, s)‖1+ε

1‖xn‖≤R dµ(s)

+C
d(xn)

γ

1+ε

1‖xn‖≤R

≤C + C
d(xn)

γ

1+ε

1‖xn‖≤R . (10)

Taking expectations, the bound (7) is established.

Using [13, Lemma 4.2], the uniform integrability condition (7) implies1 that {P̄a,γX−1
γ : a ∈

K ∩ DγM , γ ∈ (0, γ0]} is tight, and for any T > 0,

sup
a∈K∩DγM

P̄a,γ(‖Xγ ◦Mγ,R‖∞,T > ε)
γ→0−−−→ 0 , (11)

where the notation ‖x‖∞,T stands for the uniform norm of x on [0, T ].

Lemma 3.3. For an arbitrary sequence (an, γn) such that an ∈ K∩DγnM and γn → 0, there exists
a subsequence (still denoted as (an, γn)) such that (an, γn)→ (a∗, 0) for some a∗ ∈ K∩ cl(D), and
there exists r.v. z and (xn : n ∈ N) defined on some probability space (Ω′,F ′,P′) into C(R+, E)
s.t. xn has the distribution P̄an,γnX−1

γn and xn(ω)→ z(ω) for all ω ∈ Ω′. Moreover, defining

un(t) := xn(γnbt/γnc) ,

the sequence (an, γn) and (xn) can be chosen in such a way that the following holds P′-a.e.

sup
n

∫ T

0

Å
d(un(t))

γn
1‖un(t)‖≤R

ã1+ ε
2

dt < +∞ (∀T > 0) , (12)

where ε > 0 is the constant introduced in Lem. 3.2.

Proof. The first point can be obtained by straightforward application of Prokhorov and Sko-
rokhod’s theorems. However, to verify the second point, we need to construct the sequences more
carefully. Choose ε > 0 as in Lem. 3.2. We define the process Y γ : EN → RN s.t. for every n ∈ N,

Y γn (x) :=
n−1∑
k=0

d(xk)1+ε/2

γε/2
1‖xk‖≤R ,

and we denote by (X,Y γ) : EN → (E×R)N the process given by (X,Y γ)n(x) := (xn, Y
γ
n (x)). We

define for every n, Z̃γn+1 := γ−1((X,Y γ)n+1 − (X,Y γ)n). By Lem. 3.2, it is easily seen that

sup
n∈N,a∈K∩DγM ,γ∈(0,γ0]

Ēa,γ
Ä
‖Z̃γn‖1‖Z̃γn‖>A

ä
A→+∞−−−−−→ 0 .

1Lemma 4.2 of [13] was actually shown with condition [a ∈ K] instead of [a ∈ K ∩ DγM ], but the proof can be
easily adapted to the latter case.
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We now apply [13, Lemma 4.2], only replacing E by E × R and P̄a,γ by P̄a,γ(X,Y γ)−1. By

this lemma, the family {P̄a,γ(X,Y γ)−1X
−1

γ : a ∈ K ∩ DγM , γ ∈ (0, γ0]} is tight, where X
−1

γ :

(E × R)N → C(R+, E × R) is the piecewise linear interpolated process, defined in the same
way as Xγ only substituting E × R with E in the definition. By Prokhorov’s theorem, one can

choose the subsequence (an, γn) s.t. P̄an,γn(X,Y γn)−1X
−1

γn converges narrowly to some probability
measure Υ on E × R. By Skorokhod’s theorem, we can define a stochastic process ((xn, yn) :
n ∈ N) on some probability space (Ω′,F ′,P′) into C(R+, E × R), whose distribution for a fixed

n coincides with P̄an,γn(X,Y γn)−1X
−1

γn , and s.t. for every ω ∈ Ω′, (xn(ω), yn(ω)) → (z(ω),w(ω)),
where (z,w) is a r.v. defined on the same space. In particular, the first marginal distribution of

P̄an,γn(X,Y γn)−1X
−1

γn coincides with P̄an,γnX−1
γn . Thus, the first point is proven.

For every γ ∈ (0, γ0], introduce the mapping

Γγ : C(R+, E) → C(R+,R)

x 7→
Ç
t 7→

∫ t

0

(γ−1d(x(γbu/γc)))1+ε/2
1‖x(γbu/γc)‖≤Rdu

å
.

We denote by X−1
γ : RN → C(R+,R) the piecewise linear interpolated process, defined in the

same way as Xγ only substituting R with E in the definition. It is straightforward to show that
Xγ ◦ Y γn = Γγ ◦ Xγ . For every n, by definition of the couple (xn, yn), the distribution under P′ of

the r.v. Γγn(xn)− yn is equal to the distribution of Γγn ◦Xγn −Xγn ◦Y
γn under P̄an,γn . Therefore,

P′-a.e. and for every n, yn = Γγn(xn). This implies that, P′-a.e., Γγn(xn) converges (uniformly on
compact set) to w. On that event, this implies that for every T ≥ 0, Γγn(xn)(T ) → w(T ), which
is finite. Hence, supn Γγn(xn)(T ) <∞ on that event, which proves the second point.

Define
vn(s, t) := −∇fγn(un(t), s)1‖un(t)‖≤R .

and
wn(s, t) := −∇gγn(un(t)− 2γ∇fγn(un(t), s), s)1‖un(t)‖≤R .

Thanks to the convergence (11), the following holds P′-a.e.:

z(t) = z(0) + lim
n→∞

∫ t

0

∫
Ξ

vn(s, u) + wn(s, u)µ(ds) du (∀t ≥ 0) . (13)

We now select an ω ∈ Ω′ s.t. the events (12) and (13) are all realized, and omit the dependence
in ω in the sequel. Otherwise stated, un, vn and wn are handled from now on as deterministic
functions, and no longer as random variables. The aim of the next lemmas is to analyze the
integrand vn(s, u) +wn(s, u). Consider some T > 0 and let λT represent the Lebesgue measure on
the interval [0, T ]. To simplify notations, we set L1+ε

E := L1+ε(Ξ× [0, T ],G ⊗B([0, T ]), µ⊗λT ;E).

Lemma 3.4. The sequences (vn : n ∈ N), (wn : n ∈ N) form bounded subsets of L1+ε/2
E .

Proof. By the same derivations as those leading to Eq. (10), there exists C > 0 such that∫ Ä
‖vn(s, t)‖1+ε/2 + ‖wn(s, t)‖1+ε/2

ä
dµ(s) ≤ C + C

d(un(t))1+ε/2

γ1+ε/2
1‖un(t)‖≤R .

The proof is concluded by applying Lem. 3.3.

The sequence of mappings ((s, t) 7→ (vn(s, t), wn(s, t))) is bounded in L1+ε/2
E2 and therefore

admits a weak cluster point in that space. We denote by (v, w) such a cluster point, where
v : Ξ× [0, T ]→ E and w : Ξ× [0, T ]→ E. Let HR(x, s) := ∇f(x, s) + ∂g(x, s)) if ‖x‖ < R, {0} if
‖a‖ > R, and HR(x, s) := E otherwise. vérifiervérifier

Denote the corresponding selection integral as HR(a) =
∫
HR(s, a)µ(ds).

à définir
plus haut
à définir
plus haut
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Lemma 3.5. For every (s, t) µ⊗ λT -a.e., (z(t), (v + w)(s, t)) ∈ gr(HR(s, . )).

Proof. To simplify notations, we now omit the dependence in (s, t) in the sequel and write un :=
un(t), vn := vn(s, t), wn := wn(s, t), hγ := hγ(·, s), ∂g := ∂g(·, s), ∇f := ∇f(·, s), γ := γn,
proxγf := proxγf(·,s), ∇fγ := ∇fγ(·, s), z := z(t). Moreover, we write fiproxγg(x) := proxγg(·,s)(x−
2γ∇fγ(x, s)) and ‹∇gγ := ∇gγ(x− 2γ∇fγ(x, s), s), for all x ∈ E.

There exists a subsequence of (γn) that is decreasing and such that dn := supt∈[0,T ] ‖un(t) −
z(t)‖ is decreasing to zero. We still denote by (γn) such a subsequence. The sequence

((vn, wn, ‖vn‖, ‖wn‖))n

converges weakly to (v, w, ṽ, w̃) in L1+ε/2
E2×R2 along some subsequence (n.b.: compactness and se-

quential compactness are the same notions in the weak topology of L1+ε/2
E×R ). We still denote by

((vn, wn, ‖vn‖, ‖wn‖))n this subsequence. By Mazur’s theorem, there exists a function J : N→ N
and a sequence of sets of weights {αk,n : n ∈ N, k = n . . . , J(n) : αk,n ≥ 0,

∑J(n)
k=n αk,n = 1} such

that the sequence of functions

(v̄n, w̄n, ṽn, w̃n) : (s, t) 7→
J(n)∑
k=n

αk,n(vk(s, t), wk(s, t), ‖vk(s, t)‖, ‖wk(s, t)‖)

converges strongly to (v, w, ṽ, w̃) in that space, as n → ∞. Taking a further subsequence (which
we still denote by (v̄n, w̄n, ṽn, w̃n)) we obtain the µ ⊗ λT -almost everywhere convergence of
(v̄n, w̄n, ṽn, w̃n) to (v̄, w̄, ṽ, w̃). Consider a negligible set N ∈ G ⊗ B([0, T ]) such that for all
(s, t) /∈ N , (v̄n, w̄n, ṽn, w̃n)→ (v, w, ṽ, w̃) and ṽ, w̃ are finite.

If ‖z(t)‖ ≥ R, obviously (z(t), (v + w)(s, t)) ∈ gr(HR(·, s)). We just need to consider the case
where ‖z(t)‖ < R. Besides, the condition (z(t), (v + w)(s, t)) ∈ gr(HR(·, s)) is equivalent to:

(z(t),−(v + w)(s, t)) ∈ gr(∂(f(·, s) + g(·, s))) = gr(∇f(·, s) + ∂g(·, s)) . (14)

To show Eq. (14), consider an arbitrary (p, q) ∈ gr(∇f(·, s) + ∂g(·, s)). There exists (qf , qg) ∈ E2

such that q = qf + qg, (p, qf ) ∈ gr(∇f(·, s)) and (p, qg) ∈ gr(∂g(·, s)).
Recall that−hγ(x) = ∇fγ(x)+∇gγ(x−2γ∇fγ(x)). We start by decomposing 〈x−p,−hγ(x)−q〉

for any x ∈ E. On the one hand,

〈x+ γhγ(x)− p,−hγ(x)− q〉 = −γ〈hγ(x), q〉 − γ‖hγ(x)‖2 + 〈x− p,−hγ(x)− q〉

On the other hand,

〈x− γ∇fγ(x)− γ‹∇gγ(x)− p,∇fγ(x) + ‹∇gγ(x)− (qf + qg)〉

=〈proxγf (x)− γ‹∇gγ(x)− p,∇fγ(x)− qf 〉+ 〈fiproxγg(x) + γ∇fγ(x)− p,‹∇gγ(x)− qg〉

=〈proxγf (x)− p,∇fγ(x)− qf 〉+ 〈fiproxγg(x)− p,‹∇gγ(x)− qg〉

− γ〈‹∇gγ(x),∇fγ(x)− qf 〉+ γ〈∇fγ(x),‹∇gγ(x)− qg〉

=〈proxγf (x)− p,∇fγ(x)− qf 〉+ 〈fiproxγg(x)− p,‹∇gγ(x)− qg〉

+ γ〈‹∇gγ(x), qf 〉 − γ〈∇fγ(x), qg〉.

Using the monotonicity of ∇f and ∂g, we finally have

0 ≤〈x− p,−hγ(x)− q〉
− γ〈∇̃gγ(x), qf 〉+ γ〈∇fγ(x), qg〉 − γ〈hγ(x), q〉. (15)

9



As ‖z‖ < R, it holds that ‖un‖ < R for every n large enough. Thus, −vn = ∇fγn(un) and
−wn = ∇gγn(un − 2γn∇fγn(un)). Using (15) with un instead of x and γn instead of γ, we have

0 ≤
J(n)∑
k=n

αk,n (〈z − p,−(vk + wk)− q〉+ 〈uk − z,−(vk + wk)− q〉)

+

J(n)∑
k=n

αk,nγk (〈wk, qf 〉 − 〈vk, qg〉 − 〈hγk(uk), q〉)

≤〈z − p,−(v̄n + w̄n)− q〉+

J(n)∑
k=n

αk,ndk (‖vk‖+ ‖wk‖+ ‖q‖)

+

J(n)∑
k=n

αk,nγk (‖wk‖‖qf‖+ ‖vk‖‖qg‖+ ‖vk‖‖q‖+ ‖wk‖‖q‖)

≤〈z − p,−(v̄n + w̄n)− q〉+ dn (ṽn + w̃n + ‖q‖)
+ γn (w̃n‖qf‖+ ṽn‖qg‖+ ṽn‖q‖+ w̃n‖q‖) . (16)

Letting n → +∞, since (vn) and (wn) are a.e bounded sequences in E, we conclude that 〈z −
p,−(v + w)− q〉 ≥ 0 a.e. As ∇f + ∂g ∈M , this implies that (z, (v + w)) ∈ ∇f + ∂g a.e.

By Lem. 3.5 and Fubini’s theorem, there is a λT -negligible set s.t. for every t outside this set,
v( . , t) is an integrable selection of HR( . , z(t)). Moreover, as v is a weak cluster point of vn in

L1+ε/2
E , it holds that

z(t) = z(0) +

∫ t

0

∫
Ξ

v(s, u) + w(s, u)µ(ds) du , (∀t ∈ [0, T ]) .

By the above equality, z is a solution to the DI ẋ ∈ HR(x) with initial condition z(0) = a∗.
Denoting by ΦR(a∗) the set of such solutions, this reads z ∈ ΦR(a∗). As a∗ ∈ K ∩ cl(D), one
has z ∈ ΦR(K ∩ cl(D)) where we use the notation ΦR(S) := ∪a∈SΦR(a) for every set S ⊂ E.
Extending the notation d(x, S) := infy∈S d(x, y), we obtain that d(xn,ΦR(K ∩ cl(D))) → 0. Thus,
for every η > 0, we have shown that P̄an,γn(d(Xγn ,ΦR(K ∩ cl(D))) > η)→ 0 as n→∞. We have
thus proven the following result:

∀η > 0, lim
γ→0

sup
a∈K∩DγM

P̄a,γ(d(Xγ ,ΦR(K ∩ cl(D))) > η) = 0 .

Let T > 0 and R > sup{‖Φ(a, t)‖ : t ∈ [0, T ], a ∈ K ∩ cl(D)} (the latter quantity being finite,
see e.g. [15]). Consider any solution x to the DI ẋ ∈ HR(x) with initial condition a ∈ K ∩ cl(D).
Consider the set F = {t ∈ [0, T ], x(t) = Φ(a, t)}. Then, 0 ∈ F . Let t̄ = supF and assume that
t̄ < T . Since F is closed, t̄ ∈ F and we have ‖x(t̄)‖ < R, hence there exists ε > 0 such that
‖x(t)‖ < R for all t ∈ [t̄, t̄+ ε]. Then, x and Φ(a, ·) are solutions to the DI ẋ ∈ H(x) over [t̄, t̄+ ε]
and x(t̄) = Φ(a, t̄), therefore x(t) = Φ(a, t) for all t ∈ [t̄, t̄+ε]. Hence, t̄+ε ∈ F . Finally, t̄ = T and
F = [0, T ]. By the same arguments as in [13, Section 4 - End of the proof], Theorem 3.1 follows.

3.2 Stability

Theorem 3.6. Assume hypotheses H1 and H2. Let x? ∈ Z(∂G +∇F ) that admits a L2 repre-
sentation. Then, there exists α,C > 0 such that

Eγ,an ‖xn+1 − x?‖2 ≤ ‖xn − x?‖2 − αγ(F γ(xn) +Gγ(xn)) + γC. (17)

for γ enough close to 0.
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Proof. To simplify notations, we now omit the dependence in (s, t) in the sequel and write un :=
un(t), vn := vn(s, t), wn := wn(s, t), hγ := hγ(·, s), ∂g := ∂g(·, s), ∇f := ∇f(·, s), γ := γn,
proxγf := proxγf(·,s), ∇fγ := ∇fγ(·, s), z := z(t). Moreover, we write fiproxγg(x) := proxγg(·,s)(x−
2γ∇fγ(x, s)) and ‹∇gγ := ∇gγ(x− 2γ∇fγ(x, s), s), for all x ∈ E.

By assumption, there exists a L2 representation (ϕ,ψ) of x?. We write

〈∇fγ(x), x− x?〉 = 〈∇fγ(x)− ψ, x− x?〉+ 〈ψ, x− x?〉
= 〈∇fγ(x)− ψ,proxγf (x)− x?〉+ 〈∇fγ(x)− ψ, γ∇fγ(x)〉

+ 〈ψ, x− x?〉
= 〈∇fγ(x)− ψ,proxγf (x)− x?〉 − γ〈ψ,∇fγ(x)〉

+ 〈ϕ, x− x?〉+ γ‖∇fγ(x)‖2.

We also write

〈‹∇gγ(x), x− x?〉 = 〈‹∇gγ(x)− ϕ, x− x?〉+ 〈ϕ, x− x?〉

= 〈‹∇gγ(x)− ϕ,fiproxγg(x)− x?〉+ 〈‹∇gγ(x)− ϕ, x−fiproxγg(x)− 2γ∇fγ(x)〉

+ 〈ϕ, x− x?〉+ 〈‹∇gγ(x)− ϕ, 2γ∇fγ(x)〉

= 〈‹∇gγ(x)− ϕ,fiproxγg(x)− x?〉 − γ〈ϕ,‹∇gγ(x)〉

+ 2γ〈‹∇gγ(x),∇fγ(x)〉+ 〈ϕ, x− x?〉+ γ‖‹∇gγ(x)‖2 − 2γ〈ϕ,∇fγ(x)〉.

Hence,

〈∇fγ(x) + ‹∇gγ(x), x− x∗〉

=〈‹∇gγ(x)− ϕ,fiproxγg(x)− x?〉+ 〈∇fγ(x)− ψ,proxγf (x)− x?〉

+ γ‖‹∇gγ(x) +∇fγ(x)‖2 − γ
¶
〈ϕ+ ψ,∇fγ(x)〉+ 〈ϕ,‹∇gγ(x) +∇fγ(x)〉

©
+ 〈ϕ+ ψ, x− x?〉 (18)

By expanding

‖xn+1 − x?‖2 = ‖xn − x?‖2 + 2〈xn+1 − xn, xn − x?〉+ ‖xn+1 − xn‖2 ,

we obtain

‖xn+1 − x?‖2 = ‖xn − x?‖2 − 2γ〈‹∇gγ(xn), xn − x?〉 − 2γ〈∇fγ(xn), xn − x?〉

+ γ2‖‹∇gγ(xn) +∇fγ(xn)‖2. (19)

Using (18), we obtain

‖xn+1 − x?‖2 = ‖xn − x?‖2

− 2γ
¶
〈‹∇gγ(xn)− ϕ,fiproxγg(xn)− x?〉+ 〈∇fγ(xn)− ψ,proxγf (xn)− x?〉

©
− γ2‖‹∇gγ(xn) +∇fγ(xn)‖2 + 2γ2

¶
〈ϕ+ ψ,∇fγ(xn)〉+ 〈ϕ,‹∇gγ(xn) +∇fγ(xn)〉

©
− 2γ〈ϕ+ ψ, xn − x?〉

where we used ‖a+ b‖2 = ‖a‖2 + ‖b‖2 + 2〈a, b〉. Then, since 2〈a, b〉 ≤ ‖a‖2/2 + 2‖b‖2,

‖xn+1 − x?‖2 ≤ ‖xn − x?‖2 (20)

− 2γ
¶
〈‹∇gγ(xn)− ϕ,fiproxγg(xn)− x?〉+ 〈∇fγ(xn)− ψ,proxγf (xn)− x?〉

©
− γ2/2‖‹∇gγ(xn) +∇fγ(xn)‖2 + γ2/2‖∇fγ(xn)‖2

+ 2γ2‖ϕ‖2 + 2γ2‖ϕ+ ψ‖2 − 2γ〈ϕ+ ψ, xn − x?〉.
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Observe that the term between the braces at the right hand side of the last inequality is nonnegative
thanks to the monotonicity of ∇f(·, s) and ∂g(·, s).

Let x ∈ E. By the convexity of gγ and fγ , we have

gγ(x− 2γ∇fγ(x))− gγ(x?) ≤ 〈‹∇gγ(x), x− 2γ∇fγ(x)− x?〉 (21)

and
fγ(x)− fγ(x?) ≤ 〈∇fγ(x), x− x?〉. (22)

Using the 1/γ-Lipschitz continuity of ∇gγ we have

gγ(x)− gγ(x− 2γ∇fγ(x)) ≤ 〈‹∇gγ(x), 2γ∇fγ(x)〉+ 2γ‖∇fγ(x)‖2. (23)

Summing the inequalities (21), (22) and (23) we obtain

fγ(x)− fγ(x∗) + gγ(x)− gγ(x∗) ≤ 〈∇fγ(x) + ‹∇gγ(x), x− x∗〉+ 2γ‖∇fγ(x)‖2 (24)

Using (18),

fγ(x)− fγ(x∗) + gγ(x)− gγ(x∗)

≤ 2γ‖∇fγ(x)‖2

+ 〈‹∇gγ(x)− ϕ,fiproxγg(x)− x?〉+ 〈∇fγ(x)− ψ,proxγf (x)− x?〉

+ γ‖‹∇gγ(x) +∇fγ(x)‖2 − γ
¶
〈ϕ+ ψ,∇fγ(x)〉+ 〈ϕ,‹∇gγ(x) +∇fγ(x)〉

©
+ 〈ϕ+ ψ, x− x?〉

≤ 3

2
γ‖∇fγ(x)‖2

+ 〈‹∇gγ(x)− ϕ,fiproxγg(x)− x?〉+ 〈∇fγ(x)− ψ,proxγf (x)− x?〉

+
3

2
γ‖‹∇gγ(x) +∇fγ(x)‖2 + 〈ϕ+ ψ, x− x?〉+

γ

2
‖ϕ‖2 +

γ

2
‖ϕ+ ψ‖2

≤ − 3

2
γ‖∇fγ(x)‖2 + 3

{
γ‖∇fγ(x)‖2 − 〈∇fγ(x)− ψ,proxγf (x)− x?〉

}
+ 6
¶
〈‹∇gγ(x)− ϕ,fiproxγg(x)− x?〉+ 〈∇fγ(x)− ψ,proxγf (x)− x?〉

©
+

3

2
γ‖‹∇gγ(x) +∇fγ(x)‖2 + 〈ϕ+ ψ, x− x?〉+

γ

2
‖ϕ‖2 +

γ

2
‖ϕ+ ψ‖2

Since 〈‹∇gγ(x) − ϕ,fiproxγg(x) − x?〉 and 〈∇fγ(x) − ψ,proxγf (x) − x?〉 are nonnegative. Using
ψ = ∇f(x?), ∇fγ(x) = ∇f(proxγf (x)) and Assumption H2, there exists by Baillon-Haddad
theorem c > 0 such that c‖∇fγ(x)− ψ‖2 ≤ 〈∇fγ(x)− ψ,proxγf (x)− x?〉. Then,

−〈∇fγ(x)− ψ,proxγf (x)− x?〉 ≤ −c‖∇fγ(x)− ψ‖2 ≤ −c/2‖∇fγ(x)‖2 + c‖ψ‖2.

If γ < c/2 we finally have

fγ(x)− fγ(x∗) + gγ(x)− gγ(x∗)

≤− 3

2
γ‖∇fγ(x)‖2 + 3c‖ψ‖2

+ 6
¶
〈‹∇gγ(x)− ϕ,fiproxγg(x)− x?〉+ 〈∇fγ(x)− ψ,proxγf (x)− x?〉

©
+

3

2
γ‖‹∇gγ(x) +∇fγ(x)‖2 + 〈ϕ+ ψ, x− x?〉+

γ

2
‖ϕ‖2 +

γ

2
‖ϕ+ ψ‖2.
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Using 20, there exists α,C,C ′ > 0 such that

‖xn+1 − x?‖2 ≤ ‖xn − x?‖2

− αγ {fγ(xn) + gγ(xn)− fγ(x?)− gγ(x?)}
+ Cγ

{
‖ϕ‖2 + ‖ψ‖2 + ‖ϕ+ ψ‖2

}
+ C ′γ〈ϕ+ ψ, xn − x?〉.

Taking the conditional expectation, the last inner product vanishes, and we get the result.

Lemma 3.7. If Eq (17) hold, then the set of measures I(P) is tight.

Proof. The following inequalities hold F γ0(x) + Gγ0(x) ≤ F γ(x) + Gγ(x) ≤ F γ
′
(x) + Gγ

′
(x) ≤

F (x)+G(x) for all 0 ≤ γ′ ≤ γ ≤ γ0. Moreover H3⇐⇒ F γ0 +Gγ0coercive ⇐⇒ F γ0 +Gγ0 coercive
(see [?]). Hence, condition (PH) in [13] holds.

Lemma 3.8. Let Assumptions H7, H6, and H3 hold true. Then, for all ε > 0, there exists M > 0
such that

sup
γ∈(0,γ0]

sup
π∈I(Pγ)

π((DMγ)c) ≤ ε.

Proof. We start by writing

d(xn+1) ≤ ‖xn+1 −Πcl(D)(xn)‖ ≤ ‖xn+1 −Πcl(D(ξn+1))(xn)‖+ ‖Πcl(D(ξn+1))(xn)−Πcl(D)(xn)‖.

On the one hand, we have by Assumption H6 and the nonexpansiveness of the resolvent that

Ēa,γn ‖xn+1 −Πcl(D(ξn+1))(xn)‖ ≤ Ēa,γn ‖ proxγg(·,ξn+1)(xn)−Πcl(D(ξn+1))(xn)‖+ γĒa,γn ‖∇fγ(xn, ξn+1)‖
≤ Cγ(1 + F γ(xn) +Gγ(xn)) ,

On the other hand, since

‖Πcl(D(ξn+1))(xn)−Πcl(D)(xn)‖2 ≤ d(xn)2 − d(xn, D(ξn+1))2 (see (8)),

we can make use of Assumption H7 to obtain

Ēa,γn ‖Πcl(D(ξn+1))(xn)−Πcl(D)(xn)‖ ≤ (Ēa,γn ‖Πcl(D(ξn+1))(xn)−Πcl(D)(xn)‖2)1/2 ≤ ρd(xn) ,

where ρ ∈ [0, 1). We therefore obtain that Ēa,γn d(xn+1) ≤ ρd(xn) +Cγ(1 +F γ(xn) +Gγ(xn)). By
iterating, we end up with the inequality

Ēa,γ(d(xn+1)) ≤ ρn+1d(a) + Cγ
n∑
k=0

ρn−k(1 + Ēa,γ(F γ(xk) +Gγ(xk))). (25)

By taking the expectation and iterating in Th. 3.6,

α
n∑
k=0

Ēa,γ(F γ(xk) +Gγ(xk)) ≤ 1

γ
‖a− x?‖2 + (n+ 1)C

for all n ≥ 0. Thus, by induction, for all k ≥ 0, Ea,γ(F γ(xk) + Gγ(xk)) < ∞. By Markov’s vérifier ce
point. On
a vraiment
besoin de
vérifier les
integra-
bilités?

vérifier ce
point. On
a vraiment
besoin de
vérifier les
integra-
bilités?

inequality,

P̄a,γ(d(xk) ≥Mγ) ≤ Ēa,γ(d(xk))

Mγ

for all k ∈ N. Let πγ ∈ I(Pγ). From Th. 3.6, and Lem. 3.7 we have

Eγ,an ‖xn+1 − x?‖2 ≤ ‖xn − x?‖2 − αγ(F γ0(xn) +Gγ0(xn)) + γC. (26)

for all γ ∈ (0, γ0]. Using [13] it implies

sup
γ∈(0,γ0]

sup
π∈I(Pγ)

π(F γ0 +Gγ0) <∞.
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In particular, noting that d(x) ≤ ‖x‖+‖Πcl(D)(0)‖, we obtain that supγ∈(0,γ0] supπ∈I(Pγ) π(d) <
∞. Let γ ∈ (0, γ0] and π ∈ I(Pγ). Getting back to (25), we have for all n ∈ N,

π({x : d(x) ≥Mγ}) = P̄π,γ(d(xn+1) ≥Mγ)

≤ Eπ,γ(d(xn+1))

Mγ

≤ ρn+1π(d)

Mγ
+
C

M

n∑
k=0

ρn−k(1 + Eπ,γ(F γ0(xk) +Gγ0(xk)))

= ρn+1π(d)

Mγ
+
C

M

n∑
k=0

ρn−k(1 + π(F γ0 +Gγ0))

≤ ρn+1 C

Mγ
+
C

M
.

By making n → ∞, we obtain that π((DMγ)c) ≤ C/M , and the proof is concluded by taking M
as large as required.

Lemma 3.9. Let the assumptions of the statement of Th. 3.1 hold true. Assume that for all
ε > 0, there exists M > 0 such that

sup
γ∈(0,γ0]

sup
π∈I(Pγ)

π((DMγ)c) ≤ ε. (27)

Then, as γ → 0, any cluster point of I(P) is an element of I(Φ).

Proof. See [?]

3.3 Proof of Th. 2.1

Assume H1-H6. By 3.7,
⋃
γ∈(0,γ0] I(Pγ) is tight and by Lem. 3.8 and Lem. 3.9 any cluster point

of I(P) is an element of I(Φ) as γ → 0. The rest of the proof follows word-for-word from [13].
préciser
que π
intègre ψ

préciser
que π
intègre ψ
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