"Exponential Convergence Time of Gradient Descent for One-Dimensional Deep Linear Neural
 Networks" by Ohad Shamir (2018)

Adil Salim

KAUST, Sping 2019

Problem

Supervised Machine Learning with linear predictors

$$
\begin{array}{rll}
P_{W_{1}, \ldots, W_{k}}: & \text { features } & \longrightarrow \text { labels } \\
x & \longmapsto \prod_{i=1}^{k} W_{i} x
\end{array}
$$

where W_{i} matrix.

Example: Deep Linear neural networks with depth k. Close to feedforward networks but simpler.

Training :

$$
\begin{equation*}
\min _{W_{1}, \ldots, W_{k}} F\left(W_{1}, \ldots, W_{k}\right)=f\left(\prod_{i=1}^{k} W_{i}\right) \tag{1}
\end{equation*}
$$

where f differentiable Lipschitz function. Note that F is not convex.

Example

- Features x_{j}
- Labels y_{j}
- $P_{W_{1}, \ldots, W_{k}}$ should map the features with the labels:

$$
\min _{W_{1}, \ldots, W_{k}} \sum_{j}\left\|\left(\prod_{i=1}^{k} W_{i}\right) x_{j}-y_{j}\right\|^{2}
$$

- $f(W)=\sum_{j}\left\|W x_{j}-y_{j}\right\|^{2}$

Result

Problem: Time for training as a function of k i.e Time to solve

$$
\min _{W_{1}, \ldots, W_{k}} F\left(W_{1}, \ldots, W_{k}\right)=f\left(\prod_{i=1}^{k} W_{i}\right)
$$

via Gradient Descent algorithm as a function of k.

Negative result : Training time $=\exp (\Omega(k))$

Gradient Descent algorithm

Assume that W_{1}, \ldots, W_{k} are real numbers (no longer matrices).

Algorithm:

- Random initialization W_{1}, \ldots, W_{k} close to $1, \ldots, 1$ or zero mean, unit variance.
- $W_{j} \longleftarrow W_{j}-\gamma \frac{\partial F}{\partial W_{j}}\left(W_{1}, \ldots, W_{k}\right)$

Note that

$$
\frac{\partial F}{\partial W_{j}}\left(W_{1}, \ldots, W_{k}\right)=\prod_{i \neq j} W_{i} f^{\prime}\left(\prod_{i=1}^{k} W_{i}\right)
$$

Statement

Theorem 1

There exists $C, \varepsilon>0$ such that if $\gamma \leq \exp (C k)$ then, with probability at least $1-\exp (-\Omega(k))$ over the initialization the following hold : the number of iterations n required such that the $n^{\text {th }}$ iterate W_{1}, \ldots, W_{k} of Gradient Descent satisfies $F\left(W_{1}, \ldots, W_{k}\right)-\inf F \leq \varepsilon$ is at least $\exp (\Omega(k))$ (i.e $n \geq \exp (\Omega(k))$).

Consider the random initialization W_{1}, \ldots, W_{k}. Then $\prod_{i=1}^{k} W_{k}$ is, with high probability, exponentially small in k. Since

$$
\frac{\partial F}{\partial W_{j}}\left(W_{1}, \ldots, W_{k}\right)=\prod_{i \neq j} W_{i} f^{\prime}\left(\prod_{i=1}^{k} W_{i}\right)
$$

the gradient at the initialization is, with high probability, exponentially small in k as well. One can show that the gradient is also exponentially small at any point from a bounded distance of the initialization. As a result, Gradient Descent only makes exponentially small steps, and hence, exponentially small progress.

