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Introduction

Consider a probability density over Euclidean space X :

π(x) ∝ exp(−U(x))

where U is convex and smooth.

I Goal ? Sample from the distribution π.

I Why ? Machine learning/ Signal processing/ Bayesian statistics
problems.

I How ? Generate a sequence of random variables (xn) in X s.t.

xn −→ π

in distribution.
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Langevin Monte Carlo

Langevin Monte Carlo (LMC) is a sampling algorithm :

xn+1 = xn − γ∇U(xn) +
√

2γBn+1

where (Bn)n i.i.d r.v with standard gaussian distribution.

Intuition : LMC is a discretization of the (continuous time) Langevin
equation

dXt = −∇U(Xt)dt +
√

2dBt

and it is well known that Xt −→ π(x) ∝ exp(−U(x)).
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Analysis of LMC

I Asymptotic theory : Well known

I Non-asymptotic theory :

D(xn, π) ≤ C

nα

where D(xn, p) is some ”distance” between π and the distribution of
xn.

1. Last 5 years (Dalalyan, Durmus, Moulines, ...) :
Based on Langevin equation

2. Last year (Wibisono, Bernton, Durmus et. al., Jordan et al., ...) :
Based on convex optimization (in a measure space) — much
”simpler” proofs

Goal of this talk : Analysis of LMC using convex optimization (last part
of the presentation)1.

1Based on [Durmus et al.’18]
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Gradient Flow (GF) in Euclidean space

Consider a smooth convex function F : X→ R. The Gradient Flow (GF)
associated to F is the solution to the ODE

ẋ(t) = −∇F (x(t)), t ≥ 0. (1)

Equivalently (prove it), it is the solution to

{F (x(t))− F (a)} ≤ −1

2

d

dt
‖x(t)− a‖2, ∀a ∈ X,∀t ≥ 0.

(Euclidean space - Continuous time)
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Lyapunov functions

Three Lyapunov functions are usually used to study GF.
Let x? ∈ arg minF .

1. L1(t) = F (x(t))− F (x?). L̇1(t) ≤ 0. Therefore, F (x(t))↘.

2. L2(t) = 1
2‖x(t)− x?‖2. Using (Euclidean space - Continuous time),

0 ≤ {F (x(t))− F (x?)} ≤ −L̇2(t).

Moreover, using the convexity of F

F (x(t))− F (x?) ≤ ‖x(0)− x?‖2 − ‖x(t)− x?‖2

2t
.

3. L3(t) = tL1(t) + L2(t). Using L̇3(t) ≤ 0, using the convexity of F ,

F (x(t))− F (x?) ≤ ‖x(0)− x?‖2 − ‖x(t)− x?‖2

2t
. (2)
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Gradient Descent Algorithm

The Gradient algorithm with step γ > 0

xn+1 − xn
γ

= −∇F (xn) (3)

can be seen as a discretization of the GF. Therefore, its analysis follows
the same lines.

For example, here is an analysis using a discrete version of L2.
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Analysis of Gradient Algorithm

‖xn+1 − x?‖2 = ‖xn − x?‖2 + γ2‖∇F (xn)‖2 − 2γ〈∇F (xn), xn − x?〉
≤ ‖xn − x?‖2 + γ2‖∇F (xn)‖2 − 2γ {F (xn)− F (x?)}
≤ ‖xn − x?‖2 + γ2‖∇F (xn)‖2 − 2γ {F (xn+1)− F (x?)}
− 2γ {F (xn)− F (xn+1)}
≤ ‖xn − x?‖2 − γ2 (1− γL) ‖∇F (xn)‖2 − 2γ {F (xn+1)− F (x?)}

where the last inequality comes from the smoothness of F :

F (xn+1)−F (xn) ≤ 〈∇F (xn), xn+1−xn〉+
L

2
‖xn+1−xn‖2 = −γ

(
1− γL

2

)
‖∇F (xn)‖2.

Hence,

{F (xn+1)− F (x?)} ≤ ‖xn − x?‖2 − ‖xn+1 − x?‖2

2γ
(Euclidean space - Discrete time)

If xn = 1
n

∑n
k=1 xk , using the convexity of F ,

F (xn)− F (x?) ≤ ‖x0 − x?‖2 − ‖xn − x?‖2

2γn
.
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GF in the space of probability measures

In the sequel, we assume all the measures µ we consider to have a
positive density µ(x) w.r.t Lebesgue. Let µ, ν ∈M(X) probability
measures.

Wasserstein distance W2 : W 2
2 (µ, ν) := inf E(‖X − Y ‖2) where the inf

(in fact a min) is w.r.t. all r.v (X ,Y ) such that X ∼ µ and Y ∼ ν.
Similar to ‖ · ‖2.

In the space of probability measures, a GF (µt)t≥0 associated to a
”convex” function F :M(X)→ R is defined to be a solution to

{F(µt)−F(ν)} ≤ −1

2

d

dt
W 2

2 (µt , ν), ∀ν ∈M(X),∀t ≥ 0.

(Measure space - Continuous time)
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Examples of GF2

1. (Bt) Brownian motion,
√

2Bt ∼ µt . (µt) GF associated to

H(µ) :=

∫
µ(x) log(µ(x))dx .

2. More generally, (Xt) solution to Langevin equation

dXt = −∇U(Xt)dt +
√

2dBt ,

Xt ∼ µt . (µt) GF associated to H(µ) + E(µ) where

E(µ) :=

∫
U(x)dµ(x).

2see [Ambrosio et al.’08]
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Kullback-Liebler

Kullback-Liebler divergence KL: KL(µ|ν) :=
∫
µ(x) log(µ(x)ν(x) )dx .

Not a distance but KL(µ|ν) ≥ 0 with equality iff µ = ν.

From now on, let π(x) ∝ exp(−U(x)), where U : X→ R convex smooth.

Let F(µ) := KL(µ|π). Then,

F(µ) = F(µ)−F(π) = H(µ) + E(µ)− (H(π) + E(π)). (4)

In other words, Langevin is the GF associated to F .
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LMC algorithm

Recall LMC algorithm

xn+1 = xn − γ∇U(xn) +
√

2γBn+1 (5)

where (Bn)n i.i.d r.v with standard gaussian distribution.
Denote

xn ∼ µn

and
x̃n+1 := xn − γ∇U(xn) ∼ µ̃n+1.

We shall prove

{F(µn+1)−F(π)} ≤ W 2
2 (µn, π)−W 2

2 (µn+1, π)

2γ
+ Lγd .

(Measure space - Discrete time)

16 / 23



Step 1

Denote d the dimension of X.

Convexity + smoothness :

0 ≤ U(xn+1)− U(x̃n+1)− 〈∇U(x̃n+1), xn+1 − x̃n+1〉 ≤
L

2
‖x̃n+1 − xn+1‖2

0 ≤ U(xn+1)− U(x̃n+1)− 〈∇U(x̃n+1),
√

2γBn+1〉 ≤ L

2
‖
√

2γBn+1‖2.

Taking the expectation :

{E(µn+1)− E(µ̃n+1)} ≤ Lγd .
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Step 2 : ”Gradient Descent”

First, for every y ∈ X,

U(x̃n+1)− U(y) ≤ ‖xn − y‖2 − ‖x̃n+1 − y‖2

2γ

(This is Eq. (Euclidean space - Discrete time))
Then, taking the expectation and then the inf over couplings,

{E(µ̃n+1)− E(π)} ≤ W 2
2 (µn, π)−W 2

2 (µ̃n+1, π)

2γ
.
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Step 3

Consider the GF (νt) associated to H starting at ν0 = µ̃n+1. Then,

H(νt)−H(π) ≤ W 2
2 (ν0, π)−W 2

2 (νt , π)

2t
.

(This is Eq. (2) but in a measure space)
Moreover, µn+1 = νγ because the Brownian motion is the GF associated
to H (up to a factor

√
2, see Slide 13).

{H(µn+1)−H(π)} ≤ W 2
2 (µ̃n+1, π)−W 2

2 (µn+1, π)

2γ
.
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End of the proof

Summing the three inequalities

{F(µn+1)−F(π)} ≤ W 2
2 (µn, π)−W 2

2 (µn+1, π)

2γ
+ Lγd .

(Measure space - Discrete time)

Using the convexity of F(µ) = KL(µ|π),

KL(µn+1|π) ≤ W 2
2 (µ0, π)

2γn
+ Lγd .

Take γ = O(1/
√
n).
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Main ideas

I Gradient Descent as a discretization of Euclidean GF

I Langevin as discretization of measure-valued GF

I Langevin as Gradient algorithm in measure space.
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Related topics

I Nesterov acceleration of GF

I Langevin for non convex optimization

I Stein Variational Gradient Descent.
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