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Introduction

Consider a probability density over Euclidean space X :
m(x) o< exp(—U(x))

where U is convex and smooth.
» Goal 7 Sample from the distribution 7.

» Why ? Machine learning/ Signal processing/ Bayesian statistics
problems.

» How ? Generate a sequence of random variables (x,) in X s.t.
Xn H T

In distribution.
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Langevin Monte Carlo

Langevin Monte Carlo (LMC) is a sampling algorithm :

Xpt1 = Xp — YV U(Xn) + /27Bn11

where (B,), i.i.d r.v with standard gaussian distribution.

Intuition : LMC is a discretization of the (continuous time) Langevin

equation
dX; = —VU(X;)dt + v/2dB,

and it is well known that X; — m(x) o exp(—U(x)).
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Analysis of LMC

» Asymptotic theory : Well known

» Non-asymptotic theory :

C
D ny S_
() <

where D(x,, p) is some "distance” between 7 and the distribution of
Xp.
1. Last 5 years (Dalalyan, Durmus, Moulines, ...) :
Based on Langevin equation
2. Last year (Wibisono, Bernton, Durmus et. al., Jordan et al., ...) :
Based on convex optimization (in a measure space) — much
"simpler” proofs

Goal of this talk : Analysis of LMC using convex optimization (last part

of the presentation)?.

1Based on [Durmus et al.'18]
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Gradient Flow (GF) in Euclidean space

Consider a smooth convex function F : X — R. The Gradient Flow (GF)
associated to F is the solution to the ODE

x(t) = —VF(x(t)), t>0. (1)

Equivalently (prove it), it is the solution to

{F(x(t)) — F(a)} < —=—||x(t) — a||?>, VaeX,Vt>O0.

(Euclidean space - Continuous time)
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Lyapunov functions

Three Lyapunov functions are usually used to study GF.
Let x, € argmin F.

1. Li(t) = F(x(t)) — F(x,). Li(t) < 0. Therefore, F(x(t)) \..
2. Ly(t) = %||x(t) — x«||?. Using (Euclidean space - Continuous time),

0 < {F(x(t)) = F(x)} < —La(t).

Moreover, using the convexity of F

[%(0) = xull® = lIx(8) = xu[I*

(1) — F(x,) <
F(R()) ~ F(x.) < -
3. La(t) = tLy(t) + La(t). Using L3(t) <0, using the convexity of F,

Fx(e) — Fx,) < PO Xl O 2 xlE g

8/23



Gradient Descent Algorithm

The Gradient algorithm with step v > 0

XM’V_ = —VF(x,) (3)

can be seen as a discretization of the GF. Therefore, its analysis follows
the same lines.

For example, here is an analysis using a discrete version of L.
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Analysis of Gradient Algorithm

2+ VAIVF(x)|I? = 29(VF(xn), Xn — X,)

)
Xn — X |I2 + V2 VF(xa)[|* = 27 {F(xn) — F(x.)}
2+ 2IIVF () 1P = 29 {F(xnt1) — F(x0)}
— 29{F(xa) = F(Xn11)}
< lxo = xelI? =72 (L = AL) [VF(xa)[|* = 27 {F(Xn41) — F(x0)}

where the last inequality comes from the smoothness of F :

x4 = xe1?

]
3
X
_|_
2

IA A
3
S

L vL
Fsm)~Fn) < (VF () 3ma—xn)+ 5 =l = =1 (1= 5 ) IVF Gl

Hence,
X0 — x| = [Xn1 — x|
2
(Euclidean space - Discrete time)
If x,, = % > h_1 Xk, using the convexity of F,

1F(xnt1) = F(x)} <

_ 2 _ 2
F) — F < 10l = xn =

2yn
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GF in the space of probability measures

In the sequel, we assume all the measures i1 we consider to have a
positive density pu(x) w.r.t Lebesgue. Let u, v € M(X) probability
measures.

Wasserstein distance W, : W (u,v) := inf E(]|X — Y||?) where the inf
(in fact a min) is w.r.t. all r.v (X, Y) such that X ~ g and Y ~ v.
Similar to || - ||%.

In the space of probability measures, a GF (u¢)r>0 associated to a
"convex" function F : M(X) — R is defined to be a solution to

(Fle) ~ FW)} < — SWE(ew), ¥ € M(X), 2> 0.

(Measure space - Continuous time)
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Examples of GF?

1. (B:) Brownian motion, v/2B; ~ p¢. (u:) GF associated to

M) i= [ () log(u(x))
2. More generally, (X;) solution to Langevin equation

dX; = —VU(X;)dt + v2dB;,

X ~ pe. () GF associated to H(u) + E(u) where

£(n) = [ U)dut).

2see [Ambrosio et al.’08]
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Kullback-Liebler

Kullback-Liebler divergence KL: KL(u[v) := [ uu(x) log(4})dx.
Not a distance but KL(u|v) > 0 with equality iff u = v.

From now on, let 7(x) oc exp(—U(x)), where U : X — R convex smooth.

Let F(p) := KL(p|w). Then,

Fp) = F(p) = F(r) = H(p) + E(p) — (H(m) + E(7)). (4)

In other words, Langevin is the GF associated to F.
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LMC algorithm

Recall LMC algorithm

Xnt1 = Xnp — YV U(Xp) + VvV 27Bni1 (5)
where (B,), i.i.d r.v with standard gaussian distribution.
Denote
Xn ™~ Hn
and

Xn+1 - = Xp — /Yv U(Xn) Hn41-

We shall prove

W22(Mn>7T) - sz(,un+1,77)

21y
(Measure space - Discrete time)

{F(nr1) — F(m)} < + Lvyd.
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Step 1

Denote d the dimension of X.

Convexity + smoothness :

'\

0 < U(Xnt1) — U(xn+1) — (VU(Xn11)s X1 — Xnt1) §||Xn+1 - XnJrlH2

0 < U(xp41) — U(xnt1) = (VU(Xn11), v/ 27Bn+1) < §l|\/273n+1H2-

Taking the expectation :

1E€(nt1) — E(fng1)} < Lyd.
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Step 2 : " Gradient Descent”

First, for every y € X,

”Xn — YH2 - ||Xn+1 — Y||2
2y

U(xnr1) — U(y) <

(This is Eq. (Euclidean space - Discrete time))

Then, taking the expectation and then the inf over couplings,

W22(:una 7T) o W22(:un+17 7T)
27y '

1€(pns1) = E(m)} <
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Step 3

Consider the GF (v;) associated to H starting at vy = 1. Then,

W5 (v, ) — W5 (e, )
2t '

H(ve) — H(m) <

(This is Eq. (2) but in a measure space)

Moreover, (1,11 = v because the Brownian motion is the GF associated
to H (up to a factor V2, see Slide 13).

Vm@?(l£n4—1>7T) T bmé?(/Ln%—177T)
2~y '

{H(pns1) — H(m)} <

19 /23



End of the proof

Summing the three inequalities

V®é§(lﬁ,,,7r) T bmé?(an%-177T)

2y
(Measure space - Discrete time)

(Flans1) = F(m)} < + Lyd.

Using the convexity of F(u) = KL(u|7),

— \/ng(/bo, 7T)
KL(f,,1]m) < o + Lvd.

Take v = O(1/+/n).
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Main ideas

» Gradient Descent as a discretization of Euclidean GF
» Langevin as discretization of measure-valued GF

» Langevin as Gradient algorithm in measure space.
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Related topics

» Nesterov acceleration of GF
» Langevin for non convex optimization

» Stein Variational Gradient Descent.
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