Sampling via Convex Optimization

Adil Salim

KAUST, Sping 2019

Introduction

- Optimization in Euclidean space
- Optimization in the space of probability measures
- Analysis of Langevin Monte Carlo
- Conclusion

Introduction

Consider a probability density over Euclidean space X :

```
\pi(x) \propto \exp(-U(x))
```

where U is convex and smooth.

- Goal ? Sample from the distribution π .
- Why ? Machine learning/ Signal processing/ Bayesian statistics problems.
- How ? Generate a sequence of random variables (x_n) in X s.t.

$$x_n \longrightarrow \pi$$

in distribution.

Langevin Monte Carlo

Langevin Monte Carlo (LMC) is a sampling algorithm :

$$x_{n+1} = x_n - \gamma \nabla U(x_n) + \sqrt{2\gamma} B_{n+1}$$

where $(B_n)_n$ i.i.d r.v with standard gaussian distribution.

Intuition : LMC is a discretization of the (continuous time) Langevin equation

$$dX_t = -\nabla U(X_t)dt + \sqrt{2}dB_t$$

and it is well known that $X_t \longrightarrow \pi(x) \propto \exp(-U(x))$.

Analysis of LMC

- Asymptotic theory : Well known
- Non-asymptotic theory :

$$D(x_n,\pi) \leq \frac{C}{n^{lpha}}$$

where $D(x_n, p)$ is some "distance" between π and the distribution of x_n .

- 1. Last 5 years (Dalalyan, Durmus, Moulines, ...) : Based on Langevin equation
- Last year (Wibisono, Bernton, Durmus *et. al.*, Jordan *et al.*, ...) : Based on convex optimization (in a measure space) — much "simpler" proofs

Goal of this talk : Analysis of LMC using convex optimization (last part of the presentation)¹.

¹Based on [Durmus *et al.*'18]

Introduction

Optimization in Euclidean space

Optimization in the space of probability measures

Analysis of Langevin Monte Carlo

Conclusion

Gradient Flow (GF) in Euclidean space

Consider a smooth convex function $F : X \to \mathbb{R}$. The Gradient Flow (GF) associated to F is the solution to the ODE

$$\dot{\mathsf{x}}(t) = -\nabla F(\mathsf{x}(t)), \quad t \ge 0. \tag{1}$$

Equivalently (prove it), it is the solution to

$$\{F(\mathsf{x}(t)) - F(a)\} \leq -\frac{1}{2} \frac{d}{dt} \|\mathsf{x}(t) - a\|^2, \quad \forall a \in \mathsf{X}, \forall t \geq 0.$$
(Euclidean space - Continuous time)

Lyapunov functions

Three Lyapunov functions are usually used to study GF. Let $x_* \in \arg \min F$.

- 1. $L_1(t) = F(\mathsf{x}(t)) F(x_\star)$. $L_1(t) \leq 0$. Therefore, $F(\mathsf{x}(t)) \searrow$.
- 2. $L_2(t) = \frac{1}{2} ||\mathbf{x}(t) \mathbf{x}_{\star}||^2$. Using (Euclidean space Continuous time),

$$0 \leq \{F(\mathsf{x}(t)) - F(x_{\star})\} \leq -L_2(t).$$

Moreover, using the convexity of F

$$F(\bar{x}(t)) - F(x_{\star}) \leq \frac{\|x(0) - x_{\star}\|^2 - \|x(t) - x_{\star}\|^2}{2t}$$

3. $L_3(t) = tL_1(t) + L_2(t)$. Using $L_3(t) \le 0$, using the convexity of F,

$$F(\mathbf{x}(t)) - F(x_{\star}) \leq \frac{\|\mathbf{x}(0) - x_{\star}\|^2 - \|\mathbf{x}(t) - x_{\star}\|^2}{2t}.$$
 (2)

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Gradient Descent Algorithm

The Gradient algorithm with step $\gamma > 0$

$$\frac{x_{n+1} - x_n}{\gamma} = -\nabla F(x_n) \tag{3}$$

can be seen as a discretization of the GF. Therefore, its analysis follows the same lines.

For example, here is an analysis using a discrete version of L_2 .

Analysis of Gradient Algorithm

$$\begin{aligned} \|x_{n+1} - x_{\star}\|^{2} &= \|x_{n} - x_{\star}\|^{2} + \gamma^{2} \|\nabla F(x_{n})\|^{2} - 2\gamma \langle \nabla F(x_{n}), x_{n} - x_{\star} \rangle \\ &\leq \|x_{n} - x_{\star}\|^{2} + \gamma^{2} \|\nabla F(x_{n})\|^{2} - 2\gamma \{F(x_{n}) - F(x_{\star})\} \\ &\leq \|x_{n} - x_{\star}\|^{2} + \gamma^{2} \|\nabla F(x_{n})\|^{2} - 2\gamma \{F(x_{n+1}) - F(x_{\star})\} \\ &- 2\gamma \{F(x_{n}) - F(x_{n+1})\} \\ &\leq \|x_{n} - x_{\star}\|^{2} - \gamma^{2} (1 - \gamma L) \|\nabla F(x_{n})\|^{2} - 2\gamma \{F(x_{n+1}) - F(x_{\star})\} \end{aligned}$$

where the last inequality comes from the smoothness of F :

$$F(x_{n+1})-F(x_n) \leq \langle \nabla F(x_n), x_{n+1}-x_n \rangle + \frac{L}{2} ||x_{n+1}-x_n||^2 = -\gamma \left(1-\frac{\gamma L}{2}\right) ||\nabla F(x_n)||^2.$$

Hence,

$$\{F(x_{n+1}) - F(x_{\star})\} \leq \frac{\|x_n - x_{\star}\|^2 - \|x_{n+1} - x_{\star}\|^2}{2\gamma}$$
(Euclidean space - Discrete time)
If $\overline{x}_n = \frac{1}{n} \sum_{k=1}^n x_k$, using the convexity of F ,

$$F(\overline{x}_n) - F(x_{\star}) \leq \frac{\|x_0 - x_{\star}\|^2 - \|x_n - x_{\star}\|^2}{2\gamma n}.$$

Introduction

Optimization in Euclidean space

Optimization in the space of probability measures

Analysis of Langevin Monte Carlo

Conclusion

GF in the space of probability measures

In the sequel, we assume all the measures μ we consider to have a positive density $\mu(x)$ w.r.t Lebesgue. Let $\mu, \nu \in \mathcal{M}(X)$ probability measures.

Wasserstein distance W_2 : $W_2^2(\mu, \nu) := \inf \mathbb{E}(||X - Y||^2)$ where the inf (in fact a min) is w.r.t. all r.v (X, Y) such that $X \sim \mu$ and $Y \sim \nu$. Similar to $|| \cdot ||^2$.

In the space of probability measures, a GF $(\mu_t)_{t\geq 0}$ associated to a "convex" function $\mathcal{F} : \mathcal{M}(\mathsf{X}) \to \mathbb{R}$ is defined to be a solution to

 $\{\mathcal{F}(\mu_t) - \mathcal{F}(\nu)\} \leq -\frac{1}{2} \frac{d}{dt} W_2^2(\mu_t, \nu), \quad \forall \nu \in \mathcal{M}(\mathsf{X}), \forall t \geq 0.$ (Measure space - Continuous time)

Examples of GF^2

1. (B_t) Brownian motion, $\sqrt{2}B_t \sim \mu_t$. (μ_t) GF associated to

$$\mathcal{H}(\mu) := \int \mu(x) \log(\mu(x)) dx.$$

2. More generally, (X_t) solution to Langevin equation

$$dX_t = -\nabla U(X_t)dt + \sqrt{2}dB_t,$$

 $X_t \sim \mu_t$. (μ_t) GF associated to $\mathcal{H}(\mu) + \mathcal{E}(\mu)$ where

$$\mathcal{E}(\mu) := \int U(x) d\mu(x).$$

²see [Ambrosio *et al.*'08]

▲□▶▲□▶▲□▶▲□▶ □ シペの

Kullback-Liebler

Kullback-Liebler divergence KL: $\operatorname{KL}(\mu|\nu) := \int \mu(x) \log(\frac{\mu(x)}{\nu(x)}) dx$. Not a distance but $\operatorname{KL}(\mu|\nu) \ge 0$ with equality iff $\mu = \nu$.

From now on, let $\pi(x) \propto \exp(-U(x))$, where $U : X \to \mathbb{R}$ convex smooth.

Let $\mathcal{F}(\mu) := \mathrm{KL}(\mu|\pi)$. Then,

 $\mathcal{F}(\mu) = \mathcal{F}(\mu) - \mathcal{F}(\pi) = \mathcal{H}(\mu) + \mathcal{E}(\mu) - (\mathcal{H}(\pi) + \mathcal{E}(\pi)).$ (4)

In other words, Langevin is the GF associated to \mathcal{F} .

Introduction

Optimization in Euclidean space

Optimization in the space of probability measures

Analysis of Langevin Monte Carlo

Conclusion

LMC algorithm

Recall LMC algorithm

$$x_{n+1} = x_n - \gamma \nabla U(x_n) + \sqrt{2\gamma} B_{n+1}$$
(5)

where $(B_n)_n$ i.i.d r.v with standard gaussian distribution. Denote

 $x_n \sim \mu_n$

 and

$$\widetilde{x_{n+1}} := x_n - \gamma \nabla U(x_n) \sim \widetilde{\mu_{n+1}}.$$

We shall prove

$$\{\mathcal{F}(\mu_{n+1}) - \mathcal{F}(\pi)\} \leq rac{W_2^2(\mu_n, \pi) - W_2^2(\mu_{n+1}, \pi)}{2\gamma} + L\gamma d.$$

(Measure space - Discrete time)

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ▲ ■ ◆ ○ Q (~ 16/23)

Step 1

Denote *d* the dimension of X.

Convexity + smoothness :

$$0 \leq U(x_{n+1}) - U(\widetilde{x_{n+1}}) - \langle \nabla U(\widetilde{x_{n+1}}), x_{n+1} - \widetilde{x_{n+1}} \rangle \leq \frac{L}{2} \|\widetilde{x_{n+1}} - x_{n+1}\|^2$$

$$0 \leq U(x_{n+1}) - U(\widetilde{x_{n+1}}) - \langle \nabla U(\widetilde{x_{n+1}}), \sqrt{2\gamma}B_{n+1} \rangle \leq \frac{L}{2} \|\sqrt{2\gamma}B_{n+1}\|^2.$$

Taking the expectation :

$$\{\mathcal{E}(\mu_{n+1}) - \mathcal{E}(\widetilde{\mu_{n+1}})\} \leq L\gamma d.$$

Step 2 : "Gradient Descent"

First, for every $y \in X$,

$$U(\widetilde{x_{n+1}}) - U(y) \le \frac{\|x_n - y\|^2 - \|\widetilde{x_{n+1}} - y\|^2}{2\gamma}$$

(This is Eq. (Euclidean space - Discrete time)) Then, taking the expectation and then the inf over couplings,

$$\{\mathcal{E}(\widetilde{\mu_{n+1}}) - \mathcal{E}(\pi)\} \leq \frac{W_2^2(\mu_n, \pi) - W_2^2(\widetilde{\mu_{n+1}}, \pi)}{2\gamma}.$$

Step 3

Consider the GF (ν_t) associated to \mathcal{H} starting at $\nu_0 = \widetilde{\mu_{n+1}}$. Then,

$$\mathcal{H}(\nu_t) - \mathcal{H}(\pi) \leq \frac{W_2^2(\nu_0, \pi) - W_2^2(\nu_t, \pi)}{2t}.$$

(This is Eq. (2) but in a measure space) Moreover, $\mu_{n+1} = \nu_{\gamma}$ because the Brownian motion is the GF associated to \mathcal{H} (up to a factor $\sqrt{2}$, see Slide 13).

$$\{\mathcal{H}(\mu_{n+1}) - \mathcal{H}(\pi)\} \leq \frac{W_2^2(\widetilde{\mu_{n+1}}, \pi) - W_2^2(\mu_{n+1}, \pi)}{2\gamma}$$

End of the proof

Summing the three inequalities

$$\{\mathcal{F}(\mu_{n+1}) - \mathcal{F}(\pi)\} \leq \frac{W_2^2(\mu_n, \pi) - W_2^2(\mu_{n+1}, \pi)}{2\gamma} + L\gamma d.$$
(Measure space - Discrete time)

Using the convexity of $\mathcal{F}(\mu) = \mathrm{KL}(\mu|\pi)$,

$$\mathrm{KL}(\overline{\mu}_{n+1}|\pi) \leq \frac{W_2^2(\mu_0,\pi)}{2\gamma n} + L\gamma d.$$

Take $\gamma = \mathcal{O}(1/\sqrt{n})$.

Introduction

Optimization in Euclidean space

Optimization in the space of probability measures

Analysis of Langevin Monte Carlo

Conclusion

Main ideas

- Gradient Descent as a discretization of Euclidean GF
- Langevin as discretization of measure-valued GF
- Langevin as Gradient algorithm in measure space.

Related topics

- Nesterov acceleration of GF
- Langevin for non convex optimization
- Stein Variational Gradient Descent.