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Stochastic Subgradient Algorithm

min
x∈Rd

F(x), F(x) = Eξ(f (x , ξ))

where ξ is a r.v., for every s, f (·, s) ∈ Γ0(Rd) has a full domain,
and for every x , f (x , ·) is measurable.
Stochastic subgradient algorithm (generalizes the Law of Large
Numbers)

xn+1 = xn − γn+1∇̃f (xn, ξn+1)

where

I (ξn) i.i.d copies of ξ

I (γn) ∈ `2 \ `1 is a sequence of positive numbers.

I ∇̃f (x , s) is a subgradient of f (·, s) at point x ∈ Rd .

Theorem : xn → x? ∈ arg min F a.s.
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Example : Portfolio optimization

Define ∆ = {x ∈ Rd ,
∑d

i=1 x(i) = 1, ∀i , x(i) ≥ 0}, d ≥ 1.

Markowitz portfolio optimization

min
x∈∆

Eξ(〈x , ξ〉2) subject to Eξ(〈x , ξ〉) = r

where r > 01 and ξ is a random variable (r.v.) in Rd with
distribution µ.

The distribution µ is unknown but revealed across time through
i.i.d realizations (ξn)n∈N of ξ.

1Plenary talk of S. Ahmed this afternoon
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The Problem

Solve

min
x∈Rd ,z∈Rp

(F + G)(x) + (P + Q)(z) s.t. Ax + Bz = c (1)

where

I F,G,P,Q are proper, lsc, convex functions s.t.
∀x ∈ Rd ,F(x) <∞ and ∀z ∈ Rp,P(z) <∞.

I A,B are matrices

I c ∈ Rq is a vector.

One can use Vu-Condat algorithm [Vu’13, Condat’13]
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Stochastic Optimization Framework

I F(x) = Eξ(f (x , ξ)) where ξ is a r.v., for every s, f (·, s) is a
convex function over Rd , and for every x , f (x , ·) is
measurable.

I Similar representation for G,P,Q :
G(x) = Eξ(g(x , ξ)),P(x) = Eξ(p(x , ξ)),Q(x) = Eξ(q(x , ξ)).

I A = E(A) where A is a random matrix.

I Similar representation for B, c : B = E(B), c = E(c).

The distributions of ξ,A,B, c are unknown but revealed across
time through i.i.d realizations ξn,An,Bn, cn.
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The Proposed Algorithm
At iteration n + 1, the previous iterate is
(xn, zn, λn) ∈ Rd × Rp × Rq, and (ξn+1,An+1,Bn+1, cn+1) is
observed. Then,

xn+1 = proxγn+1g(·,ξn+1)

(
xn − γn+1(∇̃f (xn, ξn+1) + AT

n+1λn)
)
,

zn+1 = proxγn+1q(·,ξn+1)

(
zn − γn+1(∇̃p(zn, ξn+1) + BT

n+1λn)
)
,

λn+1 = λn + γn+1 (An+1xn + Bn+1zn − cn+1) .

(2)

where
I (γn) ∈ `2 \ `1 is a sequence of positive numbers.
I ∇̃f (x , s) is a subgradient of f (·, s) at point x ∈ Rd .
I proxγg is the proximity operator2 of g : ∀x ∈ Rd , γ > 0,

proxγg (x) = arg min
y∈Rd

1

2γ
‖x − y‖2 + g(y).

2Plenary talk of M. Teboulle yesterday
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Convergence of the Algorithm

I If G,P,Q,A,B, c are equal to zero, then Problem (1) is
equivalent to min F and Algorithm (2) boils down to the
stochastic subgradient algorithm.

I If P,Q,A,B, c are equal to zero, then Problem (1) is
equivalent to min F + G and Algorithm (2) boils down to the
stochastic proximal gradient algorithm.

Theorem (BH’15)

In this case, a.s. xn −→n→+∞ x? ∈ arg min F + G.

I In the general case, define x̄n =
∑n

k=1 γkxk∑n
k=1 γk

and similarly z̄n, λ̄n.

Theorem (SBH’18)

(x̄n, z̄n, λ̄n) −→n→+∞ (x?, z?, λ?) a.s. where (x?, z?) is a.s. a
solution of Problem (1) and λ? is a.s. a dual solution of (1).
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Maximal Monotone Operators3

Euclidean space X, operator A : X⇒ X

I A is identified with its graph
gr(A) = {(x , y) ∈ X× X, y ∈ A(x)}

I A−1 := {(y , x) ∈ X× X, x ∈ A(y)}
I Z(A) = A−1(0) = {x ∈ X, 0 ∈ A(x)}
I A is monotone if ∀(x1, y1), (x2, y2) ∈ A, 〈y1− y2, x1− x2〉 ≥ 0

I A is maximal monotone if A is monotone and maximal
among monotone operators (for ⊂)

I In this case, the resolvent JγA = (I + γA)−1 : X→ X is a
contraction [Minty’62]

Examples :

I A = ∂G,G ∈ Γ0(X), Z(∂G) = arg min G, Jγ∂G = proxγG

I A a skew-symmetric matrix
3Keynote of P.L. Combettes this morning, [Bauschke & Combettes ’11]
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Example

A ∈M (X) = {Maximal monotone operators over X}

.

gr(A) gr(A)

.

Figure 1: Left: A non maximal monotone operator over R. Right: A
maximal extension of the monotone operator

Write A = M + M′ where M′ : X→ X.
Aim : Find x? ∈ Z(M + M′)
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Forward Backward algorithm

Algorithm to find x? ∈ Z(M + M′)

xn+1 = JγM(xn − γM′(xn))

Many examples like the proximal gradient algorithm,
Chambolle-Pock, Vu-Condat...

If (cocoercivity) : 〈M′(x1)−M′(x2), x1 − x2〉 ≥ c‖x1 − x2‖2 and
γ < 2c then

xn −→n→+∞ x? ∈ Z(M + M′)

12/18



Random monotone operators

Random variable A with values in M (X) [Attouch’79]
Expectation : x ∈ X

E(A)(x) = {E(ϕ), ϕ ∈ A(x) a.s., ϕ integrable}

Example : A = ∂g(·, ξ), E(∂g(·, ξ)) = ∂G where
G(x) = Eξ(g(x , ξ)) [Rockafellar & Wets’82]
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Stochastic Forward Backward algorithm

M,M ′ random monotone operators with unknown distribution.
Denote M = E(M),M′ = E(M ′).
Algorithm to find x? ∈ Z(M + M′).

xn+1 = Jγn+1Mn+1(xn − γn+1M
′
n+1(xn))

where (Mn)n are i.i.d copies of M (similarly for M ′) and
(γn) ∈ `2 \ `1.

Theorem (BH’15)

x̄n −→n→+∞ x? where x? ∈ Z(M + M′) a.s.

No need of cocoercivity thanks to the decreasing step size.4

4Ad: If γn ≡ γ is constant and cocoercivity holds then x̄n converges to
Z(M + M′) in Probability as n→ +∞ and γ → 0, see [BHS’18]
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Saddle Points
Recall Problem (1)

min
x∈Rd ,z∈Rp

F(x) + G(x) + P(z) + Q(z) s.t. Ax + Bz = c

We look for saddle points of the Lagrangian function

L(x , z , λ) = F(x) + G(x) + P(z) + Q(z) + 〈λ,Ax + Bz − c〉
Then, (x , z , λ) is a saddle point iff

0 ∈ ∂F(x) + ∂G(x) + ATλ,

0 ∈ ∂P(z) + ∂Q(z) + BTλ,
0 = −Ax − Bz + c .

(3)

which is equivalent to finding zeros of M + M′:0
0
0

 ∈
∂G(x)
∂Q(z)

c


︸ ︷︷ ︸
=M(x ,z,λ)

+

∂F(x) + ATλ

∂P(z) + BTλ
−Ax − Bz


︸ ︷︷ ︸

=M′(x ,z,λ)

(4)
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Apply Stochastic Forward Backward to the Saddle Point
Problem

I M,M′ ∈M (Rd × Rp × Rq)

I M′(x , z , λ) = E(M ′)(x , z , λ) where

M ′(x , z , λ) =

∂f (x , ξ) + ATλ
∂p(z , ξ) + BTλ
−Ax − Bz


I M(x , z , λ) = E(M)(x , z , λ) where

M(x , z , λ) =

∂g(x , ξ)
∂q(z , ξ)

c

 and JγM(x , z , λ) =

proxγg(·,ξ)(x)

proxγq(·,ξ)(z)

λ− γc


I The iterations (2) are the iterations of the stochastic Forward

Backward applied to solve (4) with i.i.d copies (Mn) and (M ′n)
of M and M ′.

I Theorem 2 is a consequence of Theorem 3.
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Some questions

I An algorithm which is close to Algorithm (2) :

xn+1 = proxγn+1g(·,ξn+1)

(
xn − γn+1(∇̃f (xn, ξn+1) + AT

n+1λn)
)
,

zn+1 = proxγn+1q(·,ξn+1)

(
zn − γn+1(∇̃p(zn, ξn+1) + BT

n+1λn)
)
,

λn+1 = λn + γn+1 (An+1(2xn+1 − xn) + Bn+1(2zn+1 − zn)− cn+1) .

(5)

Can be rederive from Vu and Condat point of view [Vu’13,
Condat’13]. Numerically more stable.

I Algorithm (2) can be seen as a noisy discretization of

( ˙x(t), ˙z(t), ˙λ(t)) ∈ −(M + M′)(x(t), z(t), λ(t)).

Is a Langevin version meaningful ?
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