A Splitting Algorithm for Minimization under Stochastic Linear Constraints

Adil Salim adil-salim.github.io

Telecom ParisTech

July 4th, 2018

Joint work with Pascal Bianchi and Walid Hachem

Outline

Introduction

Random Monotone Operators

Stochastic Primal Dual algorithm : Convergence proof

Stochastic Subgradient Algorithm

$$\min_{x \in \mathbb{R}^d} \mathbf{F}(x), \qquad \mathbf{F}(x) = \mathbb{E}_{\xi}(f(x,\xi))$$

where ξ is a r.v., for every s, $f(\cdot, s) \in \Gamma_0(\mathbb{R}^d)$ has a full domain, and for every x, $f(x, \cdot)$ is measurable. **Stochastic subgradient algorithm** (generalizes the Law of Large Numbers)

$$x_{n+1} = x_n - \gamma_{n+1} \widetilde{\nabla} f(x_n, \xi_{n+1})$$

where

Theorem : $x_n \rightarrow x_* \in \arg\min \mathbf{F}$ a.s.

Example : Portfolio optimization

Define
$$\Delta = \{x \in \mathbb{R}^d, \quad \sum_{i=1}^d x(i) = 1, \quad \forall i, x(i) \ge 0\}, \ d \ge 1.$$

Markowitz portfolio optimization

$$\min_{x \in \Delta} \mathbb{E}_{\xi}(\langle x, \xi \rangle^2) \quad \text{subject to} \quad \mathbb{E}_{\xi}(\langle x, \xi \rangle) = r$$

where $r > 0^1$ and ξ is a random variable (r.v.) in \mathbb{R}^d with distribution μ .

The distribution μ is unknown but revealed across time through i.i.d realizations $(\xi_n)_{n \in \mathbb{N}}$ of ξ .

¹Plenary talk of S. Ahmed this afternoon

The Problem

Solve

$$\min_{x \in \mathbb{R}^d, z \in \mathbb{R}^p} (\mathbf{F} + \mathbf{G})(x) + (\mathbf{P} + \mathbf{Q})(z) \quad \text{s.t.} \quad \mathbf{A}x + \mathbf{B}z = \mathbf{c}$$
(1)

where

- ▶ **F**, **G**, **P**, **Q** are proper, lsc, convex functions s.t. $\forall x \in \mathbb{R}^d$, **F**(x) < ∞ and $\forall z \in \mathbb{R}^p$, **P**(z) < ∞.
- ► A, B are matrices
- $\mathbf{c} \in \mathbb{R}^q$ is a vector.

One can use Vu-Condat algorithm [Vu'13, Condat'13]

Stochastic Optimization Framework

- F(x) = E_ξ(f(x, ξ)) where ξ is a r.v., for every s, f(⋅, s) is a convex function over ℝ^d, and for every x, f(x, ⋅) is measurable.
- Similar representation for $\mathbf{G}, \mathbf{P}, \mathbf{Q}$: $\mathbf{G}(x) = \mathbb{E}_{\xi}(g(x,\xi)), \mathbf{P}(x) = \mathbb{E}_{\xi}(p(x,\xi)), \mathbf{Q}(x) = \mathbb{E}_{\xi}(q(x,\xi)).$
- $\mathbf{A} = \mathbb{E}(A)$ where A is a random matrix.
- Similar representation for $\mathbf{B}, \mathbf{c} : \mathbf{B} = \mathbb{E}(B), \mathbf{c} = \mathbb{E}(c)$.

The distributions of ξ , A, B, c are unknown but revealed across time through i.i.d realizations ξ_n , A_n , B_n , c_n .

The Proposed Algorithm

At iteration n + 1, the previous iterate is $(x_n, z_n, \lambda_n) \in \mathbb{R}^d \times \mathbb{R}^p \times \mathbb{R}^q$, and $(\xi_{n+1}, A_{n+1}, B_{n+1}, c_{n+1})$ is observed. Then,

$$\begin{aligned} x_{n+1} &= \operatorname{prox}_{\gamma_{n+1}g(\cdot,\xi_{n+1})} \left(x_n - \gamma_{n+1} (\widetilde{\nabla}f(x_n,\xi_{n+1}) + A_{n+1}^T \lambda_n) \right), \\ z_{n+1} &= \operatorname{prox}_{\gamma_{n+1}q(\cdot,\xi_{n+1})} \left(z_n - \gamma_{n+1} (\widetilde{\nabla}p(z_n,\xi_{n+1}) + B_{n+1}^T \lambda_n) \right), \\ \lambda_{n+1} &= \lambda_n + \gamma_{n+1} \left(A_{n+1}x_n + B_{n+1}z_n - c_{n+1} \right). \end{aligned}$$

$$(2)$$

where

- $(\gamma_n) \in \ell^2 \setminus \ell^1$ is a sequence of positive numbers.
- $\widetilde{\nabla} f(x,s)$ is a subgradient of $f(\cdot,s)$ at point $x \in \mathbb{R}^d$.
- $\operatorname{prox}_{\gamma g}$ is the proximity operator² of $g : \forall x \in \mathbb{R}^d, \gamma > 0$,

$$\operatorname{prox}_{\gamma g}(x) = \arg \min_{y \in \mathbb{R}^d} \frac{1}{2\gamma} \|x - y\|^2 + g(y).$$

²Plenary talk of M. Teboulle yesterday

Convergence of the Algorithm

- If G, P, Q, A, B, c are equal to zero, then Problem (1) is equivalent to min F and Algorithm (2) boils down to the stochastic subgradient algorithm.
- ► If P, Q, A, B, c are equal to zero, then Problem (1) is equivalent to min F + G and Algorithm (2) boils down to the stochastic proximal gradient algorithm.

Theorem (BH'15)

In this case, a.s. $x_n \longrightarrow_{n \to +\infty} x_{\star} \in \arg \min \mathbf{F} + \mathbf{G}$.

▶ In the general case, define $\bar{x_n} = \frac{\sum_{k=1}^n \gamma_k x_k}{\sum_{k=1}^n \gamma_k}$ and similarly $\bar{z_n}, \bar{\lambda_n}$. Theorem (SBH'18) $(\bar{x_n}, \bar{z_n}, \bar{\lambda_n}) \longrightarrow_{n \to +\infty} (x_\star, z_\star, \lambda_\star)$ a.s. where (x_\star, z_\star) is a.s. a solution of Problem (1) and λ_\star is a.s. a dual solution of (1).

Outline

Introduction

Random Monotone Operators

Stochastic Primal Dual algorithm : Convergence proof

Maximal Monotone Operators³

Euclidean space X, operator $\boldsymbol{\mathsf{A}}:X\rightrightarrows X$

- ► A is identified with its graph gr(A) = {(x, y) ∈ X × X, y ∈ A(x)}
- ► $\mathbf{A}^{-1} := \{(y, x) \in \mathsf{X} \times \mathsf{X}, x \in \mathbf{A}(y)\}$
- ► $\mathcal{Z}(\mathbf{A}) = \mathbf{A}^{-1}(0) = \{x \in \mathsf{X}, 0 \in \mathbf{A}(x)\}$
- ▶ A is monotone if $\forall (x_1, y_1), (x_2, y_2) \in A, \langle y_1 y_2, x_1 x_2 \rangle \ge 0$
- ► A is maximal monotone if A is monotone and maximal among monotone operators (for ⊂)
- In this case, the resolvent J_{γA} = (I + γA)⁻¹ : X → X is a contraction [Minty'62]

Examples :

- ► $\mathbf{A} = \partial \mathbf{G}, \mathbf{G} \in \Gamma_0(\mathsf{X}), \ \mathcal{Z}(\partial \mathbf{G}) = \arg\min \mathbf{G}, \ J_{\gamma \partial \mathbf{G}} = \operatorname{prox}_{\gamma \mathbf{G}}$
- A a skew-symmetric matrix

³Keynote of P.L. Combettes this morning, [Bauschke & Combettes '11]

Example

 $\textbf{A} \in \mathscr{M}(X) = \{ \text{Maximal monotone operators over } X \}$

Figure 1: Left: A non maximal monotone operator over \mathbb{R} . Right: A maximal extension of the monotone operator

Write $\mathbf{A} = \mathbf{M} + \mathbf{M}'$ where $\mathbf{M}' : \mathbf{X} \to \mathbf{X}$. Aim : Find $x_{\star} \in \mathcal{Z}(\mathbf{M} + \mathbf{M}')$

Forward Backward algorithm

Algorithm to find $x_{\star} \in \mathcal{Z}(\mathbf{M} + \mathbf{M}')$

$$x_{n+1} = J_{\gamma \mathsf{M}}(x_n - \gamma \mathsf{M}'(x_n))$$

Many examples like the proximal gradient algorithm, Chambolle-Pock, Vu-Condat...

If (cocoercivity) : $\langle M'(x_1) - M'(x_2), x_1 - x_2 \rangle \ge c \|x_1 - x_2\|^2$ and $\gamma < 2c$ then

$$x_n \longrightarrow_{n \to +\infty} x_\star \in \mathcal{Z}(\mathbf{M} + \mathbf{M}')$$

Random variable A with values in $\mathcal{M}(X)$ [Attouch'79] **Expectation** : $x \in X$

 $\mathbb{E}(A)(x) = \{\mathbb{E}(\varphi), \varphi \in A(x) \text{ a.s., } \varphi \text{ integrable}\}$

Example : $A = \partial g(\cdot, \xi)$, $\mathbb{E}(\partial g(\cdot, \xi)) = \partial \mathbf{G}$ where $\mathbf{G}(x) = \mathbb{E}_{\xi}(g(x, \xi))$ [Rockafellar & Wets'82]

Stochastic Forward Backward algorithm

M, M' random monotone operators with unknown distribution. Denote $\mathbf{M} = \mathbb{E}(M), \mathbf{M}' = \mathbb{E}(M')$. Algorithm to find $x_* \in \mathcal{Z}(\mathbf{M} + \mathbf{M}')$.

$$x_{n+1} = J_{\gamma_{n+1}M_{n+1}}(x_n - \gamma_{n+1}M'_{n+1}(x_n))$$

where $(M_n)_n$ are i.i.d copies of M (similarly for M') and $(\gamma_n) \in \ell^2 \setminus \ell^1$.

Theorem (BH'15)

 $\bar{x_n} \longrightarrow_{n \to +\infty} x_*$ where $x_* \in \mathcal{Z}(\mathbf{M} + \mathbf{M}')$ a.s. No need of cocoercivity thanks to the decreasing step size.⁴

⁴Ad: If $\gamma_n \equiv \gamma$ is constant and cocoercivity holds then $\bar{x_n}$ converges to $\mathcal{Z}(\mathbf{M} + \mathbf{M}')$ in Probability as $n \to +\infty$ and $\gamma \to 0$, see [BHS'18]

Outline

Introduction

Random Monotone Operators

Stochastic Primal Dual algorithm : Convergence proof

Saddle Points

Recall Problem (1)

 $\min_{x \in \mathbb{R}^d, z \in \mathbb{R}^p} \mathbf{F}(x) + \mathbf{G}(x) + \mathbf{P}(z) + \mathbf{Q}(z) \quad \text{s.t.} \quad \mathbf{A}x + \mathbf{B}z = \mathbf{c}$

We look for saddle points of the Lagrangian function

$$L(x, z, \lambda) = \mathbf{F}(x) + \mathbf{G}(x) + \mathbf{P}(z) + \mathbf{Q}(z) + \langle \lambda, \mathbf{A}x + \mathbf{B}z - \mathbf{c} \rangle$$

Then, (x, z, λ) is a saddle point iff

$$\begin{cases} 0 \in \partial \mathbf{F}(x) + \partial \mathbf{G}(x) + \mathbf{A}^{T} \lambda, \\ 0 \in \partial \mathbf{P}(z) + \partial \mathbf{Q}(z) + \mathbf{B}^{T} \lambda, \\ 0 = -\mathbf{A}x - \mathbf{B}z + \mathbf{c}. \end{cases}$$
(3)

which is equivalent to finding zeros of M + M':

$$\begin{bmatrix} 0\\0\\0\end{bmatrix} \in \begin{bmatrix} \partial \mathbf{G}(x)\\\partial \mathbf{Q}(z)\\\mathbf{c}\\ = \mathbf{M}(x,z,\lambda) \end{bmatrix} + \underbrace{\begin{bmatrix} \partial \mathbf{F}(x) + \mathbf{A}^{\mathsf{T}}\lambda\\\partial \mathbf{P}(z) + \mathbf{B}^{\mathsf{T}}\lambda\\-\mathbf{A}x - \mathbf{B}z\\ = \mathbf{M}'(x,z,\lambda) \end{bmatrix}}_{=\mathbf{M}'(x,z,\lambda)}$$

(4)

Apply Stochastic Forward Backward to the Saddle Point Problem

$$M, \mathbf{M}' \in \mathscr{M}(\mathbb{R}^{d} \times \mathbb{R}^{p} \times \mathbb{R}^{q})$$
$$M'(x, z, \lambda) = \mathbb{E}(M')(x, z, \lambda) \text{ where}$$
$$M'(x, z, \lambda) = \begin{bmatrix} \partial f(x, \xi) + A^{T}\lambda \\ \partial p(z, \xi) + B^{T}\lambda \\ -Ax - Bz \end{bmatrix}$$

$$\mathbf{M}(x, z, \lambda) = \mathbb{E}(M)(x, z, \lambda) \text{ where}$$

$$M(x, z, \lambda) = \begin{bmatrix} \partial g(x, \xi) \\ \partial q(z, \xi) \\ c \end{bmatrix} \text{ and } J_{\gamma M}(x, z, \lambda) = \begin{bmatrix} \operatorname{prox}_{\gamma g(\cdot, \xi)}(x) \\ \operatorname{prox}_{\gamma q(\cdot, \xi)}(z) \\ \lambda - \gamma c \end{bmatrix}$$

- ► The iterations (2) are the iterations of the stochastic Forward Backward applied to solve (4) with i.i.d copies (M_n) and (M'_n) of M and M'.
- Theorem 2 is a consequence of Theorem 3.

Some questions

An algorithm which is close to Algorithm (2) :

$$\begin{aligned} x_{n+1} &= \operatorname{prox}_{\gamma_{n+1}g(\cdot,\xi_{n+1})} \left(x_n - \gamma_{n+1} (\widetilde{\nabla}f(x_n,\xi_{n+1}) + A_{n+1}^T \lambda_n) \right), \\ z_{n+1} &= \operatorname{prox}_{\gamma_{n+1}q(\cdot,\xi_{n+1})} \left(z_n - \gamma_{n+1} (\widetilde{\nabla}p(z_n,\xi_{n+1}) + B_{n+1}^T \lambda_n) \right), \\ \lambda_{n+1} &= \lambda_n + \gamma_{n+1} \left(A_{n+1} (2x_{n+1} - x_n) + B_{n+1} (2z_{n+1} - z_n) - c_{n+1} \right) \end{aligned}$$
(5)

Can be rederive from Vu and Condat point of view [Vu'13, Condat'13]. Numerically more stable.

Algorithm (2) can be seen as a noisy discretization of

$$(\dot{x(t)},\dot{z(t)},\dot{\lambda(t)})\in -(\mathbf{M}+\mathbf{M}')(x(t),z(t),\lambda(t)).$$

Is a Langevin version meaningful ?

.