A Splitting Algorithm for Minimization under Stochastic Linear Constraints

Adil Salim
adil-salim.github.io
Telecom ParisTech

July 4th, 2018

Joint work with Pascal Bianchi and Walid Hachem

Outline

Introduction

Random Monotone Operators
Stochastic Primal Dual algorithm : Convergence proof

Stochastic Subgradient Algorithm

$$
\min _{x \in \mathbb{R}^{d}} \mathbf{F}(x), \quad \mathbf{F}(x)=\mathbb{E}_{\xi}(f(x, \xi))
$$

where ξ is a r.v., for every $s, f(\cdot, s) \in \Gamma_{0}\left(\mathbb{R}^{d}\right)$ has a full domain, and for every $x, f(x, \cdot)$ is measurable.
Stochastic subgradient algorithm (generalizes the Law of Large Numbers)

$$
x_{n+1}=x_{n}-\gamma_{n+1} \widetilde{\nabla} f\left(x_{n}, \xi_{n+1}\right)
$$

where

- $\left(\xi_{n}\right)$ i.i.d copies of ξ
- $\left(\gamma_{n}\right) \in \ell^{2} \backslash \ell^{1}$ is a sequence of positive numbers.
- $\widetilde{\nabla} f(x, s)$ is a subgradient of $f(\cdot, s)$ at point $x \in \mathbb{R}^{d}$.

Theorem : $x_{n} \rightarrow x_{\star} \in \arg \min \mathbf{F}$ a.s.

Example : Portfolio optimization

Define $\Delta=\left\{x \in \mathbb{R}^{d}, \quad \sum_{i=1}^{d} x(i)=1, \quad \forall i, x(i) \geq 0\right\}, d \geq 1$.

Markowitz portfolio optimization

$$
\min _{x \in \Delta} \mathbb{E}_{\xi}\left(\langle x, \xi\rangle^{2}\right) \quad \text { subject to } \quad \mathbb{E}_{\xi}(\langle x, \xi\rangle)=r
$$

where $r>0^{1}$ and ξ is a random variable (r.v.) in \mathbb{R}^{d} with distribution μ.

The distribution μ is unknown but revealed across time through i.i.d realizations $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ of ξ.
${ }^{1}$ Plenary talk of S . Ahmed this afternoon

The Problem

Solve

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}, z \in \mathbb{R}^{p}}(\mathbf{F}+\mathbf{G})(x)+(\mathbf{P}+\mathbf{Q})(z) \quad \text { s.t. } \quad \mathbf{A} x+\mathbf{B} z=\mathbf{c} \tag{1}
\end{equation*}
$$

where

- $\mathbf{F}, \mathbf{G}, \mathbf{P}, \mathbf{Q}$ are proper, Isc, convex functions s.t. $\forall x \in \mathbb{R}^{d}, \mathbf{F}(x)<\infty$ and $\forall z \in \mathbb{R}^{p}, \mathbf{P}(z)<\infty$.
- A,B are matrices
- $\mathbf{c} \in \mathbb{R}^{q}$ is a vector.

One can use Vu-Condat algorithm [Vu'13, Condat'13]

Stochastic Optimization Framework

- $\mathbf{F}(x)=\mathbb{E}_{\xi}(f(x, \xi))$ where ξ is a r.v., for every $s, f(\cdot, s)$ is a convex function over \mathbb{R}^{d}, and for every $x, f(x, \cdot)$ is measurable.
- Similar representation for $\mathbf{G}, \mathbf{P}, \mathbf{Q}$: $\mathbf{G}(x)=\mathbb{E}_{\xi}(g(x, \xi)), \mathbf{P}(x)=\mathbb{E}_{\xi}(p(x, \xi)), \mathbf{Q}(x)=\mathbb{E}_{\xi}(q(x, \xi))$.
- $\mathbf{A}=\mathbb{E}(A)$ where A is a random matrix.
- Similar representation for $\mathbf{B}, \mathbf{c}: \mathbf{B}=\mathbb{E}(B), \mathbf{c}=\mathbb{E}(c)$.

The distributions of ξ, A, B, c are unknown but revealed across time through i.i.d realizations $\xi_{n}, A_{n}, B_{n}, c_{n}$.

The Proposed Algorithm

At iteration $n+1$, the previous iterate is
$\left(x_{n}, z_{n}, \lambda_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}^{p} \times \mathbb{R}^{q}$, and $\left(\xi_{n+1}, A_{n+1}, B_{n+1}, c_{n+1}\right)$ is observed. Then,

$$
\begin{align*}
x_{n+1} & =\operatorname{prox}_{\gamma_{n+1} g\left(\cdot, \xi_{n+1}\right)}\left(x_{n}-\gamma_{n+1}\left(\widetilde{\nabla} f\left(x_{n}, \xi_{n+1}\right)+A_{n+1}^{T} \lambda_{n}\right)\right), \\
z_{n+1} & =\operatorname{prox}_{\gamma_{n+1} g\left(\cdot, \xi_{n+1}\right)}\left(z_{n}-\gamma_{n+1}\left(\widetilde{\nabla} p\left(z_{n}, \xi_{n+1}\right)+B_{n+1}^{T} \lambda_{n}\right)\right), \\
\lambda_{n+1} & =\lambda_{n}+\gamma_{n+1}\left(A_{n+1} x_{n}+B_{n+1} z_{n}-c_{n+1}\right) . \tag{2}
\end{align*}
$$

where

- $\left(\gamma_{n}\right) \in \ell^{2} \backslash \ell^{1}$ is a sequence of positive numbers.
- $\widetilde{\nabla} f(x, s)$ is a subgradient of $f(\cdot, s)$ at point $x \in \mathbb{R}^{d}$.
- $\operatorname{prox}_{\gamma g}$ is the proximity operator ${ }^{2}$ of $g: \forall x \in \mathbb{R}^{d}, \gamma>0$,

$$
\operatorname{prox}_{\gamma g}(x)=\arg \min _{y \in \mathbb{R}^{d}} \frac{1}{2 \gamma}\|x-y\|^{2}+g(y)
$$

${ }^{2}$ Plenary talk of M . Teboulle yesterday

Convergence of the Algorithm

- If $\mathbf{G}, \mathbf{P}, \mathbf{Q}, \mathbf{A}, \mathbf{B}, \mathbf{c}$ are equal to zero, then Problem (1) is equivalent to $\min \mathbf{F}$ and Algorithm (2) boils down to the stochastic subgradient algorithm.
- If $\mathbf{P}, \mathbf{Q}, \mathbf{A}, \mathbf{B}, \mathbf{c}$ are equal to zero, then Problem (1) is equivalent to $\min \mathbf{F}+\mathbf{G}$ and Algorithm (2) boils down to the stochastic proximal gradient algorithm.

Theorem (BH'15)
In this case, a.s. $x_{n} \longrightarrow_{n \rightarrow+\infty} x_{\star} \in \arg \min \mathbf{F}+\mathbf{G}$.

- In the general case, define $\overline{x_{n}}=\frac{\sum_{k=1}^{n} \gamma_{k} x_{k}}{\sum_{k=1}^{n} \gamma_{k}}$ and similarly $\overline{z_{n}}, \overline{\lambda_{n}}$.

Theorem (SBH'18)
$\left(\bar{x}_{n}, \bar{z}_{n}, \bar{\lambda}_{n}\right) \longrightarrow_{n \rightarrow+\infty}\left(x_{\star}, z_{\star}, \lambda_{\star}\right)$ a.s. where $\left(x_{\star}, z_{\star}\right)$ is a.s. a solution of Problem (1) and λ_{\star} is a.s. a dual solution of (1).

Outline

Introduction

Random Monotone Operators

Stochastic Primal Dual algorithm : Convergence proof

Maximal Monotone Operators ${ }^{3}$

Euclidean space X , operator \mathbf{A} : $\mathrm{X} \rightrightarrows \mathrm{X}$

- A is identified with its graph

$$
\begin{aligned}
& \operatorname{gr}(\mathbf{A})=\{(x, y) \in \mathrm{X} \times \mathrm{X}, y \in \mathbf{A}(x)\} \\
& \mathbf{A}^{-1}:=\{(y, x) \in \mathrm{X} \times \mathrm{X}, x \in \mathbf{A}(y)\} \\
& \mathcal{Z}(\mathbf{A})=\mathbf{A}^{-1}(0)=\{x \in \mathrm{X}, 0 \in \mathbf{A}(x)\}
\end{aligned}
$$

- \mathbf{A} is monotone if $\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbf{A},\left\langle y_{1}-y_{2}, x_{1}-x_{2}\right\rangle \geq 0$
- \mathbf{A} is maximal monotone if \mathbf{A} is monotone and maximal among monotone operators (for \subset)
- In this case, the resolvent $J_{\gamma \mathbf{A}}=(I+\gamma \mathbf{A})^{-1}: \mathbf{X} \rightarrow \mathbf{X}$ is a contraction [Minty'62]

Examples:

- $\mathbf{A}=\partial \mathbf{G}, \mathbf{G} \in \Gamma_{0}(X), \mathcal{Z}(\partial \mathbf{G})=\arg \min \mathbf{G}, J_{\gamma \partial \mathbf{G}}=\operatorname{prox}_{\gamma \mathbf{G}}$
- A a skew-symmetric matrix
${ }^{3}$ Keynote of P.L. Combettes this morning, [Bauschke \& Combettes '11]

Example

$\mathbf{A} \in \mathscr{M}(\mathrm{X})=\{$ Maximal monotone operators over X$\}$

Figure 1: Left: A non maximal monotone operator over \mathbb{R}. Right: A maximal extension of the monotone operator

Write $\mathbf{A}=\mathbf{M}+\mathbf{M}^{\prime}$ where $\mathbf{M}^{\prime}: \mathbf{X} \rightarrow \mathbf{X}$.
Aim: Find $x_{\star} \in \mathcal{Z}\left(\mathbf{M}+\mathbf{M}^{\prime}\right)$

Forward Backward algorithm

Algorithm to find $x_{\star} \in \mathcal{Z}\left(\mathbf{M}+\mathbf{M}^{\prime}\right)$

$$
x_{n+1}=J_{\gamma \mathbf{M}}\left(x_{n}-\gamma \mathbf{M}^{\prime}\left(x_{n}\right)\right)
$$

Many examples like the proximal gradient algorithm, Chambolle-Pock, Vu-Condat...

If (cocoercivity): $\left\langle\mathbf{M}^{\prime}\left(x_{1}\right)-\mathbf{M}^{\prime}\left(x_{2}\right), x_{1}-x_{2}\right\rangle \geq c\left\|x_{1}-x_{2}\right\|^{2}$ and $\gamma<2 c$ then

$$
x_{n} \longrightarrow_{n \rightarrow+\infty} x_{\star} \in \mathcal{Z}\left(\mathbf{M}+\mathbf{M}^{\prime}\right)
$$

Random monotone operators

Random variable A with values in $\mathscr{M}(\mathrm{X})$ [Attouch'79] Expectation : $x \in X$

$$
\mathbb{E}(A)(x)=\{\mathbb{E}(\varphi), \varphi \in A(x) \text { a.s., } \varphi \text { integrable }\}
$$

Example : $\boldsymbol{A}=\partial g(\cdot, \xi), \mathbb{E}(\partial g(\cdot, \xi))=\partial \mathbf{G}$ where $\mathbf{G}(x)=\mathbb{E}_{\xi}(g(x, \xi))$ [Rockafellar \& Wets'82]

Stochastic Forward Backward algorithm

M, M^{\prime} random monotone operators with unknown distribution.
Denote $\mathbf{M}=\mathbb{E}(M), \mathbf{M}^{\prime}=\mathbb{E}\left(M^{\prime}\right)$.
Algorithm to find $x_{\star} \in \mathcal{Z}\left(\mathbf{M}+\mathbf{M}^{\prime}\right)$.

$$
x_{n+1}=J_{\gamma_{n+1} M_{n+1}}\left(x_{n}-\gamma_{n+1} M_{n+1}^{\prime}\left(x_{n}\right)\right)
$$

where $\left(M_{n}\right)_{n}$ are i.i.d copies of M (similarly for M^{\prime}) and $\left(\gamma_{n}\right) \in \ell^{2} \backslash \ell^{1}$.

Theorem (BH'15)

$\bar{x}_{n} \longrightarrow_{n \rightarrow+\infty} x_{\star}$ where $x_{\star} \in \mathcal{Z}\left(\mathbf{M}+\mathbf{M}^{\prime}\right)$ a.s.
No need of cocoercivity thanks to the decreasing step size. ${ }^{4}$

[^0]
Outline

Introduction

Random Monotone Operators

Stochastic Primal Dual algorithm : Convergence proof

Saddle Points

Recall Problem (1)

$$
\min _{x \in \mathbb{R}^{d}, z \in \mathbb{R}^{p}} \mathbf{F}(x)+\mathbf{G}(x)+\mathbf{P}(z)+\mathbf{Q}(z) \quad \text { s.t. } \quad \mathbf{A} x+\mathbf{B} z=\mathbf{c}
$$

We look for saddle points of the Lagrangian function

$$
L(x, z, \lambda)=\mathbf{F}(x)+\mathbf{G}(x)+\mathbf{P}(z)+\mathbf{Q}(z)+\langle\lambda, \mathbf{A} x+\mathbf{B} z-\mathbf{c}\rangle
$$

Then, (x, z, λ) is a saddle point iff

$$
\left\{\begin{array}{l}
0 \in \partial \mathbf{F}(x)+\partial \mathbf{G}(x)+\mathbf{A}^{T} \lambda, \tag{3}\\
0 \in \partial \mathbf{P}(z)+\partial \mathbf{Q}(z)+\mathbf{B}^{T} \lambda, \\
0=-\mathbf{A} x-\mathbf{B} z+\mathbf{c}
\end{array}\right.
$$

which is equivalent to finding zeros of $\mathbf{M}+\mathbf{M}^{\prime}$:

$$
\left[\begin{array}{l}
0 \tag{4}\\
0 \\
0
\end{array}\right] \in \underbrace{\left[\begin{array}{c}
\partial \mathbf{G}(x) \\
\partial \mathbf{Q}(z) \\
\mathbf{c}
\end{array}\right]}_{=\mathbf{M}(x, z, \lambda)}+\underbrace{\left[\begin{array}{c}
\partial \mathbf{F}(x)+\mathbf{A}^{T} \lambda \\
\partial \mathbf{P}(z)+\mathbf{B}^{T} \lambda \\
-\mathbf{A} x-\mathbf{B}^{T}
\end{array}\right]}_{=\mathbf{M}^{\prime}(x, z, \lambda)}
$$

Apply Stochastic Forward Backward to the Saddle Point Problem

- $\mathbf{M}, \mathbf{M}^{\prime} \in \mathscr{M}\left(\mathbb{R}^{d} \times \mathbb{R}^{p} \times \mathbb{R}^{q}\right)$
- $\mathbf{M}^{\prime}(x, z, \lambda)=\mathbb{E}\left(M^{\prime}\right)(x, z, \lambda)$ where

$$
M^{\prime}(x, z, \lambda)=\left[\begin{array}{c}
\partial f(x, \xi)+A^{T} \lambda \\
\partial p(z, \xi)+B^{T} \lambda \\
-A x-B z
\end{array}\right]
$$

- $\mathbf{M}(x, z, \lambda)=\mathbb{E}(M)(x, z, \lambda)$ where

$$
M(x, z, \lambda)=\left[\begin{array}{c}
\partial g(x, \xi) \\
\partial q(z, \xi) \\
c
\end{array}\right] \quad \text { and } \quad J_{\gamma M}(x, z, \lambda)=\left[\begin{array}{c}
\operatorname{prox}_{\gamma g(\cdot, \xi)}(x) \\
\operatorname{prox}_{\gamma q(\cdot, \xi)}(z) \\
\lambda-\gamma c
\end{array}\right]
$$

- The iterations (2) are the iterations of the stochastic Forward Backward applied to solve (4) with i.i.d copies $\left(M_{n}\right)$ and $\left(M_{n}^{\prime}\right)$ of M and M^{\prime}.
- Theorem 2 is a consequence of Theorem 3.

Some questions

- An algorithm which is close to Algorithm (2) :

$$
\begin{align*}
x_{n+1} & =\operatorname{prox}_{\gamma_{n+1} g\left(\cdot, \xi_{n+1}\right)}\left(x_{n}-\gamma_{n+1}\left(\widetilde{\nabla} f\left(x_{n}, \xi_{n+1}\right)+A_{n+1}^{T} \lambda_{n}\right)\right), \\
z_{n+1} & =\operatorname{prox}_{\gamma_{n+1} q\left(\cdot, \xi_{n+1}\right)}\left(z_{n}-\gamma_{n+1}\left(\widetilde{\nabla} p\left(z_{n}, \xi_{n+1}\right)+B_{n+1}^{T} \lambda_{n}\right)\right), \\
\lambda_{n+1} & =\lambda_{n}+\gamma_{n+1}\left(A_{n+1}\left(2 x_{n+1}-x_{n}\right)+B_{n+1}\left(2 z_{n+1}-z_{n}\right)-c_{n+1}\right) . \tag{5}
\end{align*}
$$

Can be rederive from Vu and Condat point of view [Vu'13, Condat'13]. Numerically more stable.

- Algorithm (2) can be seen as a noisy discretization of

$$
(x \dot{(t)}, z \dot{(t)}, \dot{\lambda(t)}) \in-\left(\mathbf{M}+\mathbf{M}^{\prime}\right)(x(t), z(t), \lambda(t))
$$

Is a Langevin version meaningful ?

[^0]: ${ }^{4}$ Ad: If $\gamma_{n} \equiv \gamma$ is constant and cocoercivity holds then $\overline{x_{n}}$ converges to $\mathcal{Z}\left(\mathbf{M}+\mathbf{M}^{\prime}\right)$ in Probability as $n \rightarrow+\infty$ and $\gamma \rightarrow 0$, see [BHS'18]

