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Stochastic Subgradient Algorithm

min FG),  Fx) = Bel(x, €)

where ¢ is a r.v., for every s, f(-,s) € To(RY) has a full domain,
and for every x, f(x,-) is measurable.

Stochastic subgradient algorithm (generalizes the Law of Large
Numbers)

Xnt1 = Xn — Vo1V (X, Ent1)
where
> (&) i.i.d copies of ¢
> (7,) € £2\ (1 is a sequence of positive numbers.
» Vf(x,s) is a subgradient of f(-,s) at point x € R.
Theorem : x, — x, € argminF a.s.
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Example : Portfolio optimization

Define A= {x e R, ¢ x(i)=1, Vi,x(i)>0}, d>1.

Markowitz portfolio optimization

rréig Ee¢((x,€)?) subject to E¢((x,&)) =r

where r > 0! and ¢ is a random variable (r.v.) in R? with
distribution .

The distribution p is unknown but revealed across time through
i.i.d realizations (&,)nen of &.

!Plenary talk of S. Ahmed this afternoon
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The Problem

Solve

min (F+G)(x)+(P+Q)(z) st. Ax+Bz=c
xERYI,z€RP

where
» F,G,P,Q are proper, Isc, convex functions s.t.
Vx € RY F(x) < 0o and Vz € RP, P(z) < 0.
» A, B are matrices

» c € RY is a vector.

One can use Vu-Condat algorithm [Vu'13, Condat'13]

(1)
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Stochastic Optimization Framework

v

F(x) = E¢(f(x,&)) where { is a r.v., for every s, f(-,s) is a
convex function over R?, and for every x, f(x,) is
measurable.

v

Similar representation for G, P, Q :

G(x) = E¢(g(x€)), P(x) = Ee(p(x; £)), Q(x) = Ee(a(x, £)).
A = E(A) where A is a random matrix.

Similar representation for B,c : B = E(B),c = E(c).

v

v

The distributions of £, A, B, ¢ are unknown but revealed across
time through i.i.d realizations &,, A, Ba, cn.
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The Proposed Algorithm

At iteration n+ 1, the previous iterate is
(Xnvzn, )\n) € RY x RP x RY, and (§n+laAn+1a Bny1, Cn+1) is
observed. Then,

Xn+1 = PTOXy 1 a(-6011) (Xn - ’Yn-i—l(%f(xna Ent1) + Ar—1r+1)‘n)) )

Zn4+1 = PrOXy . 1q(-£n11) (Zn - 7n+1(%P(Zm Env1) + BnT+1)\n)> )

>\n+1 =M+ Yn+1 (An+1Xn + Bn+lzn - Cn+1) .
(2)
where
> (7,) € £2\ (1 is a sequence of positive numbers.
» Vf(x,s) is a subgradient of f(-,s) at point x € RY.
> Drox., is the proximity operator? of g : Vx € RY,v >0,

.1 2
proxvg(x) = argyrggd ZHX —y|* +&(y).

2Plenary talk of M. Teboulle yesterday
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Convergence of the Algorithm

» If G,P,Q, A, B,c are equal to zero, then Problem (1) is
equivalent to min F and Algorithm (2) boils down to the
stochastic subgradient algorithm.

» If P,Q, A, B, c are equal to zero, then Problem (1) is
equivalent to min F + G and Algorithm (2) boils down to the
stochastic proximal gradient algorithm.

Theorem (BH'15)
In this case, a.s. X, —n—100 Xx € argminF + G.

. _ m L AX .. I
> In the general case, define x, = % and similarly z,, Ap.
k=1

Theorem (SBH'18)

(Xns Zny An) —>n—to00 (Xus Z, Ax) a.5. where (x,,z,) is a.s. a
solution of Problem (1) and A, is a.s. a dual solution of (1).
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Maximal Monotone Operators®
Euclidean space X, operator A : X = X

v

A is identified with its graph

gr(A) ={(x,y) e Xx X,y € A(x)}

» Al = {(y,x) eXx X, x € A(y)}

» Z(A) =A"10) = {x € X,0 € A(x)}

» A is monotone if V(x1, y1), (x2,y2) € A, (y1 — y2,x1 — x2) > 0

» A is maximal monotone if A is monotone and maximal
among monotone operators (for C)

» In this case, the resolvent J,o = (/ +vA)™1: X — X is a
contraction [Minty'62]

Examples :
» A =0G,G € Tly(X), Z2(9G) = argmin G, J,96 = prox.g

> A a skew-symmetric matrix

3Keynote of P.L. Combettes this morning, [Bauschke & Combettes '11]
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Example

A € #(X) = {Maximal monotone operators over X}
gr(A) gr(A)
/

Figure 1: Left: A non maximal monotone operator over R. Right: A
maximal extension of the monotone operator

Write A = M + M’ where M’ : X — X.
Aim : Find x, € Z(M + M)
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Forward Backward algorithm

Algorithm to find x, € Z(M + M’)

Xn+1 = 'yM(Xn - VM/(XH))

Many examples like the proximal gradient algorithm,
Chambolle-Pock, Vu-Condat...

If (cocoercivity) : (M'(x1) — M'(x2),x1 — x2) > c||x1 — x2||? and
v < 2c then
Xp —n—sto0 X« € Z(M + M)
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Random monotone operators

Random variable A with values in .#(X) [Attouch'79]
Expectation : x € X

E(A)(x) = {E(y), p € A(x) a.s., ¢ integrable}

Example : A= 0g(-,§), E(0g(-,£)) = OG where
G(x) = E¢(g(x,€)) [Rockafellar & Wets'82]
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Stochastic Forward Backward algorithm

M, M’ random monotone operators with unknown distribution.
Denote M = E(M),M’ = E(M').
Algorithm to find x, € Z(M + M').

Xn+1 = J'y,,+1l\/ln+1 (Xn - ’Yn+1M:/1+1(Xn))

where (M), are i.i.d copies of M (similarly for M") and
(vn) € €2\ (2.

Theorem (BH'15)

Xpn —Fn—s+o00 X« Where x, € Z(M +M’) a.s.

No need of cocoercivity thanks to the decreasing step size.*

*Ad: If -, = v is constant and cocoercivity holds then X, converges to

Z(M+ M’) in Probability as n — 400 and v — 0, see [BHS'18]
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Stochastic Primal Dual algorithm : Convergence proof
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Saddle Points
Recall Problem (1)

min  F(x)+G(x)+P(z)+Q(z) st. Ax+Bz=c
xERY zeRP

We look for saddle points of the Lagrangian function
L(x,z,\) = F(x) + G(x) + P(2) + Q(z) + (\,Ax + Bz —¢)
Then, (x,z,\) is a saddle point iff
{ 0 € OF(x)+0G(x)+AT)

0 € OP(z)+0Q(z) +BT), (3)
0 = —-Ax—Bz+c.

which is equivalent to finding zeros of M + M':

0 0G(x) OF(x) + AT
0| € |0Q(z)| + |oP(z) + BT (4)
0 C —Ax — Bz

=M(x,z,\) =M’(x,z,\)
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Apply Stochastic Forward Backward to the Saddle Point
Problem
» MM’ € .Z(R9 x RP x RY)
» M(x,z,\) = E(M')(x,z,\) where
Of (x,&) + AT\

M'(x,z,\) = |0p(z,€) + BT
—Ax — Bz

» M(x,z,\) = E(M)(x, z,\) where

8g(X7 g) pI‘OX,Yg(,’g) (X)
M(x,z,\) = | 0q(z,€&) and  Jym(x,z,A) = proqu(,,g)(z)
c A—cC

» The iterations (2) are the iterations of the stochastic Forward
Backward applied to solve (4) with i.i.d copies (M,) and (M)
of M and M'.

> Theorem 2 is a consequence of Theorem 3.
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Some questions

» An algorithm which is close to Algorithm (2) :

Xn41 = PIOXy o 1) (Xn — Vi1 (VF (5, Eng1) + AnT+1)\n)) ;

Zn4+1 = PrOXy . 1q(-£n11) (Zn - ’Yn+1(VP(Zn, fn—i—l) + Brz—+1)\n)> )
Ant1 = An + V1 (Ans1(2xn41 — Xn) + Bra1(22n41 — 2n) — €nga) -

(5)

Can be rederive from Vu and Condat point of view [Vu'l3,
Condat’13]. Numerically more stable.

» Algorithm (2) can be seen as a noisy discretization of

(x(2), 2(t), A(2)) € —(M + M')(x(t), 2(t). A(2)).

Is a Langevin version meaningful ?
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