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Introduction

Consider a probability density over Euclidean space X :

p*(x) o< exp(—U(x))
where U is convex.

» Goal ? Sample from the distribution p*.

» Why ? Machine learning/ Signal processing/ Bayesian statistics
problems.

» How 7 Generate a sequence of random variables (x,) in X s.t.
i —>

where X, ~ [i,.
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Langevin Monte Carlo

Langevin Monte Carlo (LMC) is a sampling algorithm :

Xpt1 = Xp — YV U(Xn) + /27Bn11

where (B,), i.i.d r.v with standard gaussian distribution.

Intuition : (x,) is a discretization of the (continuous time) Langevin

equation
dX; = —VU(X;)dt + v/2dB,

and it is well known that X; — p*(x) o exp(—U(x)).
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Analysis of LMC

» Asymptotic theory : Well known

» Non-asymptotic theory :

1

S ST ) W2 (o, *) + O(7)

KL(47n | 1)

If U a-strongly convex,
2 * nA/2 * Y

W= (g, 1) < (1 —v0)"W* (o, o )+0(5)

1. Last 5 years (Dalalyan, Durmus, Moulines, ...) :
Based on Langevin equation

2. Last year (Wibisono, Bernton, Durmus et. al., Jordan et al., ...) :
Based on convex optimization (in a measure space) — much
"simpler” proofs.

Intuition : (un) is a discretization of the (continuous time)
Wasserstein Gradient Flow of KL(-|u™).
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Problem
We consider the case where U is nonsmooth and stochastic.

Why? SVM, logistic regression, structured priors/regularizations:
overlapping group lasso, total variation regularization...

Sample from p* o< exp(—U) where
N
U(x) = F(x) + ) _ Gi(x) (1)
i=1

> F(x) =E¢(f(x,€)), a-strongly convex (o > 0), smooth, bounded
variance of stochastic gradients.

> Gi(x) = E¢(gi(x,&)), Lipschitz.

Current approach: Stochastic Subgradient Langevin Algorithm
[Durmus et al.’18]
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Algorithm

Stochastic Proximal Langevin Algorithm (SPLA):

Xn+1 — Tfy(Xn - ’VVf(Xna gn—l—l)a Sn—l—l) + V 2"an—|—17

where
T (X, €) = Prox,g () © - - - 0 ProXyg (. ¢)(X),

where

1
proxy(x) = argmin = ||1x — y|* + g(y).
y

Related to Stochastic Passty Algorithm [Passty'79], [S. et al.'18].
Splitting algorithm.
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KL divergence, Wasserstein distance

Kullback-Leibler divergence KL: KL(p|v) := [ u(x) log(423)dx.

Not a distance but KL(u|v) > 0 with equality iff 4 = v.

Wasserstein distance W : W?(u,v) := inf E(||X — Y||?) where the inf
(in fact a min) is w.r.t. all r.v (X, Y) such that X ~ g and Y ~ v.

Wasserstein space (P2(X), W) metric space.
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Reformulation of the problem

KL(p|p™) = (E(p) +H(p)) — (E(w™) + H(p™))

where Potential energy

N

&) = [ U = [ Flduta) + Y [ 60)duto),

and Entropy

SPLA solves
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Results

Theorem 1

29 (F(fin) = F(1*)) < (L =va)W?(pn, ) = W (11, 1) +7°C. (2)

Corollary 2

Ifa=0
1

n+1)

KL(n [ 1) < 50 W2 (o, 1*) + O(7).

If a >0,

W2 (pin, 1*) < (1 = a)"W3(po, i*) + O (%)

KL(in | 1) < a1 = ya)"™ W2 (o, 1*) + O(7),
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Gradient Flow (GF) in Euclidean space

The Gradient Flow (GF) associated to U is the solution to the
Differential Inclusion

x(t) € —oU(x(t)), t=>0. (3)

Equivalently, it is the solution to

IA

1d )
— - X,Vt > 0.
zdtHx(t) al|*, Vae€X,vt>0

(Euclidean space - Continuous time)

1Ux(t)) — U(a);
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Stochastic Passty Algorithm

Stochastic Passty Algorithm can be seen as a discretization of the
Differential Inclusion.

Easier to see of the (particular case of) Gradient Descent algorithm:

XnHv_ = Y U(xn). (4)

Analysis:

(Euclidean space - Discrete time)
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GF in Wasserstein space

In the Wasserstein space, a GF (u+)r>0 associated to a "convex” function
F : P2(X) — R is defined as solution to

1d
{Flue) = F0)} < =5 W3(ue,v), v € M(X), vt > 0,
(Measure space - Continuous time)
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Examples of GF!

1. (B;) Brownian motion, v/2B; ~ pi;. (u:) GF associated to H(u).

2. More generally, (X;) solution to Langevin equation
dX; = —VU(X:)dt + V/2dB;,
Xt ~ pe. (pe) GF associated to

F(u) =H(p) + E(n) = KL(p|p™) + C

lsee [Ambrosio et al.'08]
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What we prove

Inspired from [Durmus et al."18], we prove:

W?(pan, 1) = W2(ptng1, 1)

27
(Measure space - Discrete time)

(Flua) = F ()} < +C.

1. Prove it for £(u) — E(p*) (Optimization: Stochastic Passty)
2. Prove it for H(u) — H(p*) (Gradient flow)

3. Sum the inequalities.

17 /22



Outline

Experiments

18 /22



Stochastic proximal vs Stochastic subgradient

U(X) = G1(X) =

SPLA vs ground truth
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Bayesian trend filtering on graphs
G = (V,E) graph, y € RV,

U6 = Sl yIP +XTV(x.G), TV(x.G) = 3" Ix(i) —x()
{ij}€E

1e5 E+ H as a function of time, ¢ =0.02 . A= 2.0
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Main ideas

» Langevin as discretization of Wasserstein GF
» Discretization using splitting and stochastic proximity operators

» Generalization of previous results.

22/22



	Introduction
	Results
	Gradient Flows
	Experiments
	Conclusion

