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Introduction

Consider a probability density over Euclidean space X :

µ?(x) ∝ exp(−U(x))

where U is convex.

I Goal ? Sample from the distribution µ?.

I Why ? Machine learning/ Signal processing/ Bayesian statistics
problems.

I How ? Generate a sequence of random variables (xn) in X s.t.

µn −→ µ?

where xn ∼ µn.
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Langevin Monte Carlo

Langevin Monte Carlo (LMC) is a sampling algorithm :

xn+1 = xn − γ∇U(xn) +
√

2γBn+1

where (Bn)n i.i.d r.v with standard gaussian distribution.

Intuition : (xn) is a discretization of the (continuous time) Langevin
equation

dXt = −∇U(Xt)dt +
√

2dBt

and it is well known that Xt −→ µ?(x) ∝ exp(−U(x)).
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Analysis of LMC

I Asymptotic theory : Well known

I Non-asymptotic theory :

KL(µ̄n | µ?) ≤ 1

2γ(n + 1)
W 2(µ0, µ

?) +O(γ)

If U α-strongly convex,

W 2(µn, µ
?) ≤ (1− γα)nW 2(µ0, µ

?) +O
(γ
α

)
1. Last 5 years (Dalalyan, Durmus, Moulines, ...) :

Based on Langevin equation
2. Last year (Wibisono, Bernton, Durmus et. al., Jordan et al., ...) :

Based on convex optimization (in a measure space) — much
”simpler” proofs.
Intuition : (µn) is a discretization of the (continuous time)
Wasserstein Gradient Flow of KL(·|µ?).
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Problem
We consider the case where U is nonsmooth and stochastic.

Why? SVM, logistic regression, structured priors/regularizations:
overlapping group lasso, total variation regularization...

Sample from µ? ∝ exp(−U) where

U(x) = F (x) +
N∑
i=1

Gi (x) (1)

I F (x) = Eξ(f (x , ξ)), α-strongly convex (α ≥ 0), smooth, bounded
variance of stochastic gradients.

I Gi (x) = Eξ(gi (x , ξ)), Lipschitz.

Current approach: Stochastic Subgradient Langevin Algorithm
[Durmus et al.’18]
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Algorithm

Stochastic Proximal Langevin Algorithm (SPLA):

xn+1 = Tγ(xn − γ∇f (xn, ξn+1), ξn+1) +
√

2γBn+1,

where
Tγ(x , ξ) = proxγgN (·,ξ) ◦ . . . ◦ proxγg1(·,ξ)(x),

where

proxg (x) = arg min
y

1

2
‖x − y‖2 + g(y).

Related to Stochastic Passty Algorithm [Passty’79], [S. et al.’18].
Splitting algorithm.
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KL divergence, Wasserstein distance

Kullback-Leibler divergence KL: KL(µ|ν) :=
∫
µ(x) log(µ(x)ν(x) )dx .

Not a distance but KL(µ|ν) ≥ 0 with equality iff µ = ν.

Wasserstein distance W : W 2(µ, ν) := inf E(‖X − Y ‖2) where the inf
(in fact a min) is w.r.t. all r.v (X ,Y ) such that X ∼ µ and Y ∼ ν.
Wasserstein space (P2(X),W ) metric space.
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Reformulation of the problem

KL(µ|µ?) = (E(µ) +H(µ))− (E(µ?) +H(µ?))

where Potential energy

E(µ) :=

∫
U(x)dµ(x) =

∫
F (x)dµ(x) +

N∑
i=1

∫
Gi (x)dµ(x),

and Entropy

H(µ) :=

∫
µ(x) log(µ(x))dx .

SPLA solves

min
µ∈P2(X)

F(µ) := E(µ) +H(µ).
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Results

Theorem 1

2γ (F(µ̃n)−F(µ?)) ≤ (1− γα)W 2(µn, µ
?)−W 2(µn+1, µ

?) + γ2C . (2)

Corollary 2
If α = 0

KL(µ̄n | µ?) ≤ 1

2γ(n + 1)
W 2(µ0, µ

?) +O(γ).

If α > 0,

W 2(µn, µ
?) ≤ (1− γα)nW 2(µ0, µ

?) +O
(γ
α

)
KL(µ̃n | µ?) ≤ α(1− γα)n+1W 2(µ0, µ

?) +O(γ).
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Gradient Flow (GF) in Euclidean space

The Gradient Flow (GF) associated to U is the solution to the
Differential Inclusion

ẋ(t) ∈ −∂U(x(t)), t ≥ 0. (3)

Equivalently, it is the solution to

{U(x(t))− U(a)} ≤ −1

2

d

dt
‖x(t)− a‖2, ∀a ∈ X,∀t ≥ 0.

(Euclidean space - Continuous time)
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Stochastic Passty Algorithm

Stochastic Passty Algorithm can be seen as a discretization of the
Differential Inclusion.
Easier to see of the (particular case of) Gradient Descent algorithm:

xn+1 − xn
γ

= −∇U(xn). (4)

Analysis:

{U(xn+1)− U(x?)} ≤ ‖xn − x?‖2 − ‖xn+1 − x?‖2

2γ
.

(Euclidean space - Discrete time)
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GF in Wasserstein space

In the Wasserstein space, a GF (µt)t≥0 associated to a ”convex” function
F : P2(X)→ R is defined as solution to

{F(µt)−F(ν)} ≤ −1

2

d

dt
W 2(µt , ν), ∀ν ∈M(X),∀t ≥ 0.

(Measure space - Continuous time)
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Examples of GF1

1. (Bt) Brownian motion,
√

2Bt ∼ µt . (µt) GF associated to H(µ).

2. More generally, (Xt) solution to Langevin equation

dXt = −∇U(Xt)dt +
√

2dBt ,

Xt ∼ µt . (µt) GF associated to

F(µ) = H(µ) + E(µ) = KL(µ|µ?) + C

1see [Ambrosio et al.’08]
16 / 22



What we prove

Inspired from [Durmus et al.’18], we prove:

{F(µn)−F(µ?)} ≤ W 2(µn, µ
?)−W 2(µn+1, µ

?)

2γ
+ C .

(Measure space - Discrete time)

1. Prove it for E(µ)− E(µ?) (Optimization: Stochastic Passty)

2. Prove it for H(µ)−H(µ?) (Gradient flow)

3. Sum the inequalities.
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Stochastic proximal vs Stochastic subgradient

U(x) = G1(x) = |x |, G1(x) = E(|x |+ xξ), ξ ∼ N(0, 1)
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Bayesian trend filtering on graphs
G = (V ,E ) graph, y ∈ RV .

U(x) =
1

2
‖x − y‖2 + λTV(x ,G ), TV(x ,G ) =

∑
{i,j}∈E

|x(i)− x(j)|
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Main ideas

I Langevin as discretization of Wasserstein GF

I Discretization using splitting and stochastic proximity operators

I Generalization of previous results.
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