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Presentation of the algorithm
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Stochastic Gradient algorithm
General problem in Machine Learning :
in F
i )
where

F(x) = E¢(f(x,€))

where £ is a random variable and x — f(x, &) is a.s a convex
function over X, Euclidean space.
Example :

N

min ;f(e, (Xi. Y1), min Egx,y)((0, (X, Y)).

If f(-,&) smooth : Stochastic gradient algorithm

Xn+1 = Xn — Van(Xn, §n+1)

where v, > 0 and (&,) i.i.d copies of &.
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Stochastic Proximal Gradient algorithm
Regularized problem:

min F(x) + G(x) (1)

xeX
where
F(x) = Be(f(x,€)),  G(x) = Ee(g(x,¢))-
where ¢ is a random variable, f(-,¢) and g(-,§) are convex
functions.

Stochastic Proximal Gradient algorithm :

Xn+1 = PFOX'y,,g(.,gnH)(Xn — Y Vxf(Xn; €nt1))

where 7y, > 0 and (&) i.i.d copies of £ and
1 )
proxg(x) = argmin 7 [lx — y||” + &(y)

for any convex function g.
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Convergence results
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Decreasing step size

Theorem:
If v, — 0, then, under mild assumptions ([BH'16]) : a.s,

Xp —n—oo Xx € argmin F + G
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Constant step size
Ifvn, = > 0, rewrite the algorithm

X,?.H = prox’yg(-,f,,+1)(xl,1y - ’vaf(xr% §n+1))

x @7 (t)

S

Figure 1: Continuous interpolated process : x*7(t) starting at
x»7(0) = a.
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First step : Dynamical behavior

The Differential Inclusion (DI) over R
Xa(t) € =(VF +0G)(xa(t)), xa(0)=a

admits an unique solution xj.

We look at (x#7), as a family of stochastic processes in C(R4, X)
in order to apply the ODE method. Under mild assumptions,

a,
x? = 0 Xa.

in the sense of the convergence of stochastic processes.
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Second step : Asymptotic behavior

We look at (x ), as a Markov Chain depending on - in order
study its stability.

Stability assumptions :
» F+ G — +o0
» dc > 0,x, € argmin F + G, for all x € X,

cE[[VF(x, €)=V (x, Ol < E(IVF(x,€) = VF(x, €)Ix — x.))

Then, using the dynamical behavior result,

Invariant measures for (x]) =0 Invariant measures for the DI.
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Convergence result : Asymptotic behavior

Finally, Theorem ([BHS'17]) : Under the stability assumptions,
and mild additional assumptions

n—1
Ve >0, limsup %ZP [d(x],argmin F + G) >¢] — 0.
k=0

n—o00 v—0
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Applications

11/17



An application

Consider

» An undirected graph G = (V, E)
» A vector of parameters over the nodes x € RY

» The Total Variation (TV) regularization over G
TV(x,G)= > Ix(i) = x()l-
{iJj}eE
Our problem:

min F(x) + TV(x, G) (2)

xeRY

with F: RY - R convex, differentiable.
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An application

Let £ is a stationary simple random walk over G with length L+ 1.
Then,

E (iTV(x,§)> _ ;TV(X, G).

Our problem is equivalent to

min LF(x)+ |E|E(TV(x,£)).

x€RY

Stochastic Proximal Gradient algorithm ([SBH'16]):

{ Sample the Stationary Random Walk &,y1 with length L +1
Xn1 = PrOXy | E[TV( £,.1) (X0 — YLV F (Xn))
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Another application

Consider

» A family of closed convex sets Cy,...,Cp of X

» Two convex functions F, G over X

Our problem:

min F(x) + G(x), C:= ﬂ Ci (3)

xeC
Let tc be the indicator function of a convex set C : tc(x) =0 if

x € C and t¢(x) = o0 else.
Our problem is equivalent to

TGIQ F(x)+ G(x) + Z te;(x).
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Another application
Consider
> ¢ ~ Unif({0, ..., m})
> h(x,0) = (m+1)G(x)
> h(x,i) =1c,(x) forall i € {1,---,m}
Then,
G(x) + te(x) = E(h(x,£)).

Our problem is equivalent to

)r(nelg F(x)+ E(h(x,£)).

Stochastic Proximal Gradient algorithm ([BH'16],[BHS'17]):

if $p1 =0, Xp+1 = Prox, g (xn — YV F(xn))

{ Sample  &pi1 ~ Unif({0, ..., m})
if §ny1=1>0, Xpr1 = proje,(xn — YVF(xn))
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Conclusion

» Constant step size stochastic approximation algorithm
» The ODE method

» Applications to structured penalizations
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