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Stochastic Gradient algorithm

General Problem:

min F(x)

with F smooth over X', Euclidean space.
In ML, VF is often intractable.

Constant step Stochastic Gradient algorithm (e.g [Dieuleveut
et al."17]) :

Xr7+1 = X7 — YVxf (X7, 6ns1)
with
» >0
> (&) iid
> Ee(f(x,€)) = F(x)
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Proximal Stochastic Gradient algorithm

General Problem:
min F(x) + R(x)

xXeX

with R nonsmooth convex over X', F smooth.
Constant step Proximal Stochastic Gradient algorithm (e.g
[Rosasco et al.'14],[BHS’16]) :

Xr’1y+1 = pI'OXWR(X,? - »YVf'(X;IY, En-l-l))
where

1 >
= ~x - R(y).
prox, g(x) = arg min o [x — y|I” + R(y)
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Asymptotic Convergence: F non convex and R
deterministic

Let Z ={x € E,0 € VF(x) + 0R(x)}.

Theorem [BHS'16] : If f(+,£) is not convex but f(+, &), R satisfy
the Proximal-P-L condition, then,

limsup — ZIP xk,Z > ) —y50 0.

n—+oo N
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Stochastic Proximal Gradient algorithm

What if both prox,r and VF are intractable?
Assume now that F is convex.

Stochastic Proximal Gradient algorithm [Combettes et al.'16],
[BHS'17] : If F and R are convex,
X711 = DProx, e (0 — YVxf (X7, €nt1))

with
> (&n) iid
> Ee(f(x,€)) = F(x)
> Ee(r(x,€)) = R(x).
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Asymptotic Convergence: F and R random

Theorem [BHS'17] : If F and R are convex,

1 n
limsup — ZIP(d(XZ,arg m)in F+R)>¢e) —-00.
k=1

n—+oco N
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Proof of the Asymptotic Convergences

Xpi1 = Proxy, e, ) (X0 — 7V f (X7, nt1))

x“n/(t)

el

Figure 1: Continuous interpolated process : x*7(t) starting at
x*7(0) = a.
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First step : Dynamical behavior

The Differential Inclusion (DI) over R
Xa(t) € =(VF + 0R)(xa(t)), xa(0)=a

admits an unique solution xj.

We look at (x?7), as a family of stochastic processes in C(R,, X)
in order to apply the ODE method. Under mild assumptions,

a,
x? = 0 Xa.

in the sense of the convergence of stochastic processes.
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Second step : Asymptotic behavior

We look at (x5 ), as a Markov Chain depending on + in order
study its stability.

Stability assumption:
» F+ R — +00

Then, using the dynamical behavior result,

Invariant measures for (x]) ==,_,0 Invariant measures for the DI.
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End of the proof

Invariant measures for the DI are supported by
Z={x€E,0e VF(x)+ IR(x)}.

Stability |
n—o00 8

v¥—0 | Dynamical behavior
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Problem Statement

Consider

» An undirected graph G = (V, E)
» A vector of parameters over the nodes x € RY

» The Total Variation (TV) regularization over G
TV(x,6)= Y Ix(i) = x()l-
{ij}eE
Our problem:

min F(x) 4+ TV(x, G) (1)

xERY

with F : RY — R convex, smooth.
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Example: Trend Filtering on Graphs [Wang et al.'16]

Figure 2: min,cgv 3[x — y[|> + TV(x, G)
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Problem Statement
Proximal Gradient algorithm
Xn+1 = prOX'yTV(.,G)(Xn —YVF(xn))

The computation of proxyy( ¢)(y) is
» Fast when the graph G is a path graph : Taut String

algorithm [Condat'13],[Johnson’'13],[Barbero and Sra'14].

® ©
O]

» Difficult over general large graphs
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Sampling Random Walks
Let L > 1.
Let £ is a stationary simple random walk over G with length L 4+ 1

Ee (TV(x,€)) = ‘TTV(X, G).

Our problem is equivalent to

min LF(x)+ |E|E¢ (TV(x,§)).

xERY

Stochastic Proximal Gradient algorithm:

{ Sample the Stationary Random Walk &,,.1 with length L+ 1
Xpt1 = PTOX%\E\TV(',gml)(Xn — YLV F(xs))
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Example : The Graph G
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Example : Sampling the Random Walk &,.4
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Example : Sampling the Random Walk &,.4
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Example : Sampling the Random Walk &,.4
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Example : Sampling the Random Walk &,.4
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Example : Sampling the Random Walk &,.4
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Example : Stochastic Proximal Gradient step

TV(x, &nt1) = [x(3)=x(1)[+[x(1) =x(0)[+]x(0) =x(6) |+ |x(6) —x(7)]

Xn+1 = PTOXy, | E[TV(-pe1) (Xn — VLV F(xn))
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Example : Sampling the Random Walk &,
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Example : Sampling the Random Walk &,
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Example : Sampling the Random Walk &,
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Example : Sampling the Random Walk &,
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Example : Loop
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Example : Stochastic Proximal Gradient step

TV(x, Env2) = [x(8)=x(6)|+[x(6)—x(0)[+]x(0) —x(2) |+ [x(2) —x(6)]

Xn42 = PIOXy 1 EITV(-ns2) (Xnt1 — Vot 1LV F(Xnt1))

Problem : £, is not a path graph
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Snake algorithm

Let £ is a stationary simple random walk over G with length L 4+ 1

E(TV(x,&)) = 'f'TV(X, G).

Our problem is equivalent to

min LF(x)+ |E|E¢ (TV(x,§)).

xERY

Snake algorithm:

{ Sample the Stationary Random Walk £,.1 until Loop
Xn+1 = PTOXy, | E[TV (- pp1) (Xn — VnL(Ent1) VF (xn))
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake

TV(x, &n1) = [x(3) = x(2)] + [x(2) — x(6)|
+[x(6) = x(7)] + [x(7) = x(5)] + |x(5) — x(0)]
Xnr1 = prox%|E|TV(.7§n+1)(Xn = YnL(€n+1)VF(xn))
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake

TV(x, &ny2) = [x(0) = x(7)[ + x(7) — x(6)] + [x(6) — x(9)]

Xn+2 = PIOXy BTV (- ne0) Xnt1 — Vnt1L(En12) VF (Xn41))
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Example : Snake
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Example : Snake
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Example : Snake
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Convergence of Snake algorithm

Snake is no longer an instance of the stochastic proximal gradient
algorithm.

Theorem [SBH'17] : If v, ] 0, X5 —>n—400 Xx Where
X, € argmin,crv F(x) + TV(x) as.

Proof:
> Ee (TV(x,8)) = HTV(x, G)
» Convergence of a Generalized Stochastic Proximal
Gradient Algorithm
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lllustration: Online Regularization
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Figure 3: Snake: Trend Filtering over Facebook Graph [Leskovec et al.'16]
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Structured Regularizations over Graphs

Other versions

Xrg}{gnv F(x) + R(x)

where

R = 3 oux(i).x(i))
{ijteE

with ¢;; symmetric convex.

Examples

» Weighted TV regularization, Laplacian regularization,
Weighted /Normalized Laplacian regularization (DCT)

> F(x) = Ee(f(x,€)) or 2oy filx(1))
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