A stochastic Forward Backward algorithm with application to large graphs regularization

Adil Salim
adil-salim.github.io

Telecom ParisTech
March 7, 2018

Joint work with Pascal Bianchi and Walid Hachem

Table of Contents

Stochastic Forward Backward algorithm
The algorithm
Asymptotic convergence analysis

Regularization over large graphs

Stochastic Gradient algorithm

General Problem:

$$
\min _{x \in \mathcal{X}} F(x)
$$

with F smooth over \mathcal{X}, Euclidean space.
In ML, ∇F is often intractable.

Constant step Stochastic Gradient algorithm (e.g [Dieuleveut et al.'17]) :

$$
x_{n+1}^{\gamma}=x_{n}^{\gamma}-\gamma \nabla_{x} f\left(x_{n}^{\gamma}, \xi_{n+1}\right)
$$

with

- $\gamma>0$
- $\left(\xi_{n}\right) \mathrm{iid}$
- $\mathbb{E}_{\xi}(f(x, \xi))=F(x)$

Proximal Stochastic Gradient algorithm

General Problem:

$$
\min _{x \in \mathcal{X}} F(x)+R(x)
$$

with R nonsmooth convex over \mathcal{X}, F smooth.

Constant step Proximal Stochastic Gradient algorithm (e.g [Rosasco et al.'14],[BHS'16]) :

$$
x_{n+1}^{\gamma}=\operatorname{prox}_{\gamma R}\left(x_{n}^{\gamma}-\gamma \nabla f\left(x_{n}^{\gamma}, \xi_{n+1}\right)\right)
$$

where

$$
\operatorname{prox}_{\gamma R}(x)=\arg \min _{y \in \mathcal{X}} \frac{1}{2 \gamma}\|x-y\|^{2}+R(y)
$$

Asymptotic Convergence: F non convex and R deterministic

$$
\text { Let } \mathcal{Z}=\{x \in E, 0 \in \nabla F(x)+\partial R(x)\} .
$$

Theorem [BHS'16]: If $f(\cdot, \xi)$ is not convex but $f(\cdot, \xi), R$ satisfy the Proximal-P-L condition, then,

$$
\limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{P}\left(d\left(x_{k}^{\gamma}, \mathcal{Z}\right)>\varepsilon\right) \longrightarrow_{\gamma \rightarrow 0} 0
$$

Stochastic Proximal Gradient algorithm

What if both $\operatorname{prox}_{\gamma R}$ and ∇F are intractable?
Assume now that F is convex.

Stochastic Proximal Gradient algorithm [Combettes et al.'16],
[BHS'17]: If F and R are convex,

$$
x_{n+1}^{\gamma}=\operatorname{prox}_{\gamma r\left(\cdot, \xi_{n+1}\right)}\left(x_{n}^{\gamma}-\gamma \nabla_{x} f\left(x_{n}^{\gamma}, \xi_{n+1}\right)\right)
$$

with

- $\left(\xi_{n}\right)$ iid
- $\mathbb{E}_{\xi}(f(x, \xi))=F(x)$
- $\mathbb{E}_{\xi}(r(x, \xi))=R(x)$.

Asymptotic Convergence: F and R random

Theorem [BHS'17]: If F and R are convex,
$\limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{P}\left(d\left(x_{k}^{\gamma}, \arg \min _{\mathcal{X}} F+R\right)>\varepsilon\right) \longrightarrow_{\gamma \rightarrow 0} 0$.

Proof of the Asymptotic Convergences

$$
x_{n+1}^{\gamma}=\operatorname{prox}_{\gamma r\left(\cdot, \xi_{n+1}\right)}\left(x_{n}^{\gamma}-\gamma \nabla_{x} f\left(x_{n}^{\gamma}, \xi_{n+1}\right)\right)
$$

Figure 1: Continuous interpolated process : $x^{\text {a, } \gamma}(t)$ starting at $x^{a, \gamma}(0)=a$.

First step : Dynamical behavior

The Differential Inclusion (DI) over \mathbf{R}_{+}

$$
\dot{x}_{a}(t) \in-(\nabla F+\partial R)\left(x_{a}(t)\right), \quad x_{a}(0)=a
$$

admits an unique solution x_{a}.

We look at $\left(x^{\mathrm{a}, \gamma}\right)_{\gamma}$ as a family of stochastic processes in $C\left(\mathbf{R}_{+}, \mathcal{X}\right)$ in order to apply the ODE method. Under mild assumptions,

$$
x^{a, \gamma} \Longrightarrow_{\gamma \rightarrow 0} x_{a}
$$

in the sense of the convergence of stochastic processes.

Second step : Asymptotic behavior

We look at $\left(x_{n}^{\gamma}\right)_{n}$ as a Markov Chain depending on γ in order study its stability.

Stability assumption:

- $F+R \longrightarrow_{\infty}+\infty$

Then, using the dynamical behavior result,
Invariant measures for $\left(x_{n}^{\gamma}\right) \Longrightarrow{ }_{\gamma \rightarrow 0}$ Invariant measures for the DI.

End of the proof

Invariant measures for the DI are supported by $\mathcal{Z}=\{x \in E, 0 \in \nabla F(x)+\partial R(x)\}$.

Table of Contents

Stochastic Forward Backward algorithm

Regularization over large graphs
The problem
Application of Stochastic Proximal Gradient algorithm Snake algorithm

Problem Statement

Consider

- An undirected graph $G=(V, E)$
- A vector of parameters over the nodes $x \in \mathbb{R}^{V}$
- The Total Variation (TV) regularization over G

$$
\operatorname{TV}(x, G)=\sum_{\{i, j\} \in E}|x(i)-x(j)| .
$$

Our problem:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{v}} F(x)+\operatorname{TV}(x, G) \tag{1}
\end{equation*}
$$

with $F: \mathbb{R}^{V} \rightarrow \mathbb{R}$ convex, smooth.

Example: Trend Filtering on Graphs [Wang et al.'16]

Figure 2: $\min _{x \in \mathbb{R}^{\vee}} \frac{1}{2}\|x-y\|^{2}+\operatorname{TV}(x, G)$

Problem Statement

Proximal Gradient algorithm

$$
x_{n+1}=\operatorname{prox}_{\gamma \mathrm{TV}(., G)}\left(x_{n}-\gamma \nabla F\left(x_{n}\right)\right)
$$

The computation of $\operatorname{prox}_{\mathrm{TV}(., G)}(y)$ is

- Fast when the graph G is a path graph: Taut String algorithm [Condat'13],[Johnson'13],[Barbero and Sra'14].

- Difficult over general large graphs

Sampling Random Walks

Let $L \geq 1$.
Let ξ is a stationary simple random walk over G with length $L+1$

$$
\mathbb{E}_{\xi}(\operatorname{TV}(x, \xi))=\frac{|E|}{L} \operatorname{TV}(x, G)
$$

Our problem is equivalent to

$$
\min _{x \in \mathbb{R}^{V}} L F(x)+|E| \mathbb{E}_{\xi}(\operatorname{TV}(x, \xi))
$$

Stochastic Proximal Gradient algorithm:
$\left\{\begin{array}{l}\text { Sample the Stationary Random Walk } \xi_{n+1} \text { with length } L+1 \\ x_{n+1}=\operatorname{prox}_{\gamma_{n}|E| \operatorname{TV}\left(\cdot, \xi_{n+1}\right)}\left(x_{n}-\gamma_{n} L \nabla F\left(x_{n}\right)\right)\end{array}\right.$

Example: The Graph G

Example : Sampling the Random Walk ξ_{n+1}

Example: Stochastic Proximal Gradient step

$$
\begin{gathered}
\operatorname{TV}\left(x, \xi_{n+1}\right)=|x(3)-x(1)|+|x(1)-x(0)|+|x(0)-x(6)|+|x(6)-x(7)| \\
x_{n+1}=\operatorname{prox}_{\gamma_{n}|E| \operatorname{TV}\left(\cdot, \xi_{n+1}\right)}\left(x_{n}-\gamma_{n} L \nabla F\left(x_{n}\right)\right)
\end{gathered}
$$

Example : Sampling the Random Walk ξ_{n+2}

Example: Loop

Example: Stochastic Proximal Gradient step

$$
\begin{aligned}
\operatorname{TV}\left(x, \xi_{n+2}\right) & =|x(8)-x(6)|+|x(6)-x(0)|+|x(0)-x(2)|+|x(2)-x(6)| \\
x_{n+2} & =\operatorname{prox}_{\gamma_{n+1}|E| \operatorname{TV}\left(\cdot, \xi_{n+2}\right)}\left(x_{n+1}-\gamma_{n+1} L \nabla F\left(x_{n+1}\right)\right)
\end{aligned}
$$

Problem : ξ_{n+2} is not a path graph

Snake algorithm

Let ξ is a stationary simple random walk over G with length $L+1$

$$
\mathbb{E}(\operatorname{TV}(x, \xi))=\frac{|E|}{L} \operatorname{TV}(x, G)
$$

Our problem is equivalent to

$$
\min _{x \in \mathbb{R}^{V}} L F(x)+|E| \mathbb{E}_{\xi}(\operatorname{TV}(x, \xi))
$$

Snake algorithm:

$$
\left\{\begin{array}{l}
\text { Sample the Stationary Random Walk } \xi_{n+1} \text { until Loop } \\
x_{n+1}=\operatorname{prox}_{\gamma_{n}|E| \mathrm{TV}\left(\cdot, \xi_{n+1}\right)}\left(x_{n}-\gamma_{n} L\left(\xi_{n+1}\right) \nabla F\left(x_{n}\right)\right)
\end{array}\right.
$$

Example: Snake

$$
\begin{aligned}
\operatorname{TV}\left(x, \xi_{n+1}\right) & =|x(3)-x(2)|+|x(2)-x(6)| \\
& +|x(6)-x(7)|+|x(7)-x(5)|+|x(5)-x(0)| \\
x_{n+1}= & \operatorname{prox}_{\gamma_{n}|E| \operatorname{TV}\left(\cdot, \xi_{n+1}\right)}\left(x_{n}-\gamma_{n} L\left(\xi_{n+1}\right) \nabla F\left(x_{n}\right)\right)
\end{aligned}
$$

Example: Snake

$$
\begin{aligned}
& \operatorname{TV}\left(x, \xi_{n+2}\right)=|x(0)-x(7)|+|x(7)-x(6)|+|x(6)-x(9)| \\
& x_{n+2}=\operatorname{prox}_{\gamma_{n+1}|E| \operatorname{TV}\left(\cdot, \xi_{n+2}\right)}\left(x_{n+1}-\gamma_{n+1} L\left(\xi_{n+2}\right) \nabla F\left(x_{n+1}\right)\right)
\end{aligned}
$$

Example: Snake

Example: Snake

Example: Snake

Convergence of Snake algorithm

Snake is no longer an instance of the stochastic proximal gradient algorithm.

Theorem [SBH'17]: If $\gamma_{n} \downarrow 0, x_{n} \longrightarrow_{n \rightarrow+\infty} x_{\star}$ where $x_{\star} \in \arg \min _{x \in \mathbb{R}^{V}} F(x)+\operatorname{TV}(x)$ a.s.

Proof:

- $\mathbb{E}_{\xi}(\operatorname{TV}(x, \xi))=\frac{|E|}{L} \operatorname{TV}(x, G)$
- Convergence of a Generalized Stochastic Proximal Gradient Algorithm

Illustration: Online Regularization

Figure 3: Snake: Trend Filtering over Facebook Graph [Leskovec et al.'16]

Structured Regularizations over Graphs

Other versions

$$
\min _{x \in \mathbb{R}^{V}} F(x)+R(x)
$$

where

$$
R(x)=\sum_{\{i, j\} \in E} \phi_{i, j}(x(i), x(j))
$$

with $\phi_{i, j}$ symmetric convex.

Examples

- Weighted TV regularization, Laplacian regularization, Weighted/Normalized Laplacian regularization (DCT)
- $F(x)=\mathbb{E}_{\xi}(f(x, \xi))$ or $\sum_{i \in V} f_{i}(x(i))$

References

囯 A. Dieuleveut, A. Durmus, and F. Bach.
Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains.
ArXiv e-prints, 1707.06386, 2017.
A. Salim, P. Bianchi, and W. Hachem.

Snake: a Stochastic Proximal Gradient Algorithm for Regularized Problems over Large Graphs.
To appear in Transactions on Automatic Control, 2017.
P. Bianchi, W. Hachem and A. Salim.

Constant Step Stochastic Approximations Involving Differential Inclusions: Stability, Long-Run Convergence and Applications.
ArXiv e-prints, arXiv:1612.03831, 2016.
E. P. Bianchi, W. Hachem and A. Salim.

A constant step Forward-Backward algorithm involving random maximal monotone operators.
To appear in Journal of Convex Analysis, 2017.

