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Stochastic Gradient algorithm

General Problem:
min
x∈X

F (x)

with F smooth over X , Euclidean space.
In ML, ∇F is often intractable.

Constant step Stochastic Gradient algorithm (e.g [Dieuleveut
et al.’17]) :

xγn+1 = xγn − γ∇x f (xγn , ξn+1)

with

I γ > 0

I (ξn) iid

I Eξ(f (x , ξ)) = F (x)
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Proximal Stochastic Gradient algorithm

General Problem:
min
x∈X

F (x) + R(x)

with R nonsmooth convex over X , F smooth.

Constant step Proximal Stochastic Gradient algorithm (e.g
[Rosasco et al.’14],[BHS’16]) :

xγn+1 = proxγR(xγn − γ∇f (xγn , ξn+1))

where

proxγR(x) = arg min
y∈X

1

2γ
‖x − y‖2 + R(y).
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Asymptotic Convergence: F non convex and R
deterministic

Let Z = {x ∈ E , 0 ∈ ∇F (x) + ∂R(x)}.

Theorem [BHS’16] : If f (·, ξ) is not convex but f (·, ξ),R satisfy
the Proximal-P-L condition, then,

lim sup
n→+∞

1

n

n∑
k=1

P(d(xγk ,Z) > ε) −→γ→0 0.
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Stochastic Proximal Gradient algorithm

What if both proxγR and ∇F are intractable?
Assume now that F is convex.

Stochastic Proximal Gradient algorithm [Combettes et al.’16],
[BHS’17] : If F and R are convex,

xγn+1 = proxγr(·,ξn+1)(x
γ
n − γ∇x f (xγn , ξn+1))

with

I (ξn) iid

I Eξ(f (x , ξ)) = F (x)

I Eξ(r(x , ξ)) = R(x).

6/50



Asymptotic Convergence: F and R random

Theorem [BHS’17] : If F and R are convex,

lim sup
n→+∞

1

n

n∑
k=1

P(d(xγk , arg min
X

F + R) > ε) −→γ→0 0.
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Proof of the Asymptotic Convergences

xγn+1 = proxγr(·,ξn+1)(x
γ
n − γ∇x f (xγn , ξn+1))

.

γ

xa,γ(t)

.

Figure 1: Continuous interpolated process : xa,γ(t) starting at
xa,γ(0) = a.
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First step : Dynamical behavior

The Differential Inclusion (DI) over R+

ẋa(t) ∈ −(∇F + ∂R)(xa(t)), xa(0) = a

admits an unique solution xa.

We look at (xa,γ)γ as a family of stochastic processes in C (R+,X )
in order to apply the ODE method. Under mild assumptions,

xa,γ =⇒γ→0 xa.

in the sense of the convergence of stochastic processes.
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Second step : Asymptotic behavior

We look at (xγn )n as a Markov Chain depending on γ in order
study its stability.

Stability assumption:

I F + R −→∞ +∞

Then, using the dynamical behavior result,

Invariant measures for (xγn ) =⇒γ→0 Invariant measures for the DI.
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End of the proof

Invariant measures for the DI are supported by
Z = {x ∈ E , 0 ∈ ∇F (x) + ∂R(x)}.

xγn n→∞
Stability //

%%

Iγ

γ→0 Dynamical behavior

��
Z
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Problem Statement

Consider

I An undirected graph G = (V ,E )

I A vector of parameters over the nodes x ∈ RV

I The Total Variation (TV) regularization over G

TV(x ,G ) =
∑
{i ,j}∈E

|x(i)− x(j)|.

Our problem:
min
x∈RV

F (x) + TV(x ,G ) (1)

with F : RV → R convex, smooth.
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Example: Trend Filtering on Graphs [Wang et al.’16]

Figure 2: minx∈RV
1
2‖x − y‖2 + TV(x ,G )
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Problem Statement
Proximal Gradient algorithm

xn+1 = proxγTV(.,G)(xn − γ∇F (xn))

The computation of proxTV(.,G)(y) is
I Fast when the graph G is a path graph : Taut String

algorithm [Condat’13],[Johnson’13],[Barbero and Sra’14].

I Difficult over general large graphs
15/50



Sampling Random Walks

Let L ≥ 1.
Let ξ is a stationary simple random walk over G with length L + 1

Eξ (TV(x , ξ)) =
|E |
L

TV(x ,G ).

Our problem is equivalent to

min
x∈RV

LF (x) + |E |Eξ (TV(x , ξ)) .

Stochastic Proximal Gradient algorithm:

{
Sample the Stationary Random Walk ξn+1 with length L + 1
xn+1 = proxγn|E |TV(·,ξn+1)(xn − γnL∇F (xn))
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Example : The Graph G

17/50



Example : Sampling the Random Walk ξn+1
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Example : Sampling the Random Walk ξn+1
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Example : Sampling the Random Walk ξn+1
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Example : Sampling the Random Walk ξn+1
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Example : Sampling the Random Walk ξn+1
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Example : Stochastic Proximal Gradient step

TV(x , ξn+1) = |x(3)−x(1)|+|x(1)−x(0)|+|x(0)−x(6)|+|x(6)−x(7)|

xn+1 = proxγn|E |TV(·,ξn+1)(xn − γnL∇F (xn))
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Example : Sampling the Random Walk ξn+2
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Example : Sampling the Random Walk ξn+2
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Example : Sampling the Random Walk ξn+2
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Example : Sampling the Random Walk ξn+2
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Example : Loop
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Example : Stochastic Proximal Gradient step

TV(x , ξn+2) = |x(8)−x(6)|+|x(6)−x(0)|+|x(0)−x(2)|+|x(2)−x(6)|

xn+2 = proxγn+1|E |TV(·,ξn+2)(xn+1 − γn+1L∇F (xn+1))

Problem : ξn+2 is not a path graph
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Snake algorithm

Let ξ is a stationary simple random walk over G with length L + 1

E (TV(x , ξ)) =
|E |
L

TV(x ,G ).

Our problem is equivalent to

min
x∈RV

LF (x) + |E |Eξ (TV(x , ξ)) .

Snake algorithm:

{
Sample the Stationary Random Walk ξn+1 until Loop
xn+1 = proxγn|E |TV(·,ξn+1)(xn − γnL(ξn+1)∇F (xn))
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake

TV(x , ξn+1) = |x(3)− x(2)|+ |x(2)− x(6)|
+ |x(6)− x(7)|+ |x(7)− x(5)|+ |x(5)− x(0)|

xn+1 = proxγn|E |TV(·,ξn+1)(xn − γnL(ξn+1)∇F (xn))
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake
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Example : Snake

TV(x , ξn+2) = |x(0)− x(7)|+ |x(7)− x(6)|+ |x(6)− x(9)|

xn+2 = proxγn+1|E |TV(·,ξn+2)(xn+1 − γn+1L(ξn+2)∇F (xn+1))
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Example : Snake
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Example : Snake
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Example : Snake
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Convergence of Snake algorithm

Snake is no longer an instance of the stochastic proximal gradient
algorithm.

Theorem [SBH’17] : If γn ↓ 0, xn −→n→+∞ x? where
x? ∈ arg minx∈RV F (x) + TV(x) a.s.

Proof:

I Eξ (TV(x , ξ)) = |E |
L TV(x ,G )

I Convergence of a Generalized Stochastic Proximal
Gradient Algorithm
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Illustration: Online Regularization

Figure 3: Snake: Trend Filtering over Facebook Graph [Leskovec et al.’16]
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Structured Regularizations over Graphs

Other versions
min
x∈RV

F (x) + R(x)

where
R(x) =

∑
{i ,j}∈E

φi ,j(x(i), x(j))

with φi ,j symmetric convex.

Examples

I Weighted TV regularization, Laplacian regularization,
Weighted/Normalized Laplacian regularization (DCT)

I F (x) = Eξ(f (x , ξ)) or
∑

i∈V fi (x(i))
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